Accurate peripheral resistance simulation in a mock circulatory loop is critical to the evaluation of ventricular assist devices and heart valves. Implementation of an automated device that is capable of accurate resistance settings and precise reproduction of cardiovascular parameters allows for improved construction of experimental conditions within a mock circulatory loop. A mock circulatory loop resistor that employs a proportional valve design is proposed; a piston extending into the flow path to produce a resistance to flow. Real-time position feedback of the piston is used to determine orifice size, providing resolution in the change of resistance over time. Characterization of the physical system with The MathWorks SIMULINKSIMSCAPE™ block set allowed the determination of objective device parameters; the discharge coefficient and critical Reynolds number. The determination of these values was achieved utilizing the SIMULINK™ Parameter Estimation™ tool, experimental data, and a computational plant model of the experimental setup. With this information, an accurate computational model of the resistance device is presented for use in determining resistance settings in silico prior to implementation in the mock circulatory loop. Experimental in vitro trials verified the repeatability of the automated resistor performance by means of a staircase testing of piston position during several different continuous flow rates of a glycerin/water solution.

References

References
1.
Widmaier
,
E. P.
Raff
,
H.
, and
Strang
,
K. T.
, eds.,
2004
,
Vander, Sherman, and Luciano's Human Physiology: The Mechanisms of Body Function
,
9th ed.
,
McGraw-Hill
,
New York
.
2.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer-Verlag
,
New York
.
3.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
2nd ed.
,
Springer-Verlag
,
New York
.
4.
Liu
,
Y.
,
Allaire
,
P.
,
Wu
,
Y.
,
Wood
,
H.
, and
Olsen
,
D.
,
2006
, “
Construction of an Artificial Heart Pump Performance Test System
,”
Cardiovasc. Eng.
,
6
(
4
), pp.
151
158
.10.1007/s10558-006-9019-z
5.
Timms
,
D.
,
Hayne
,
M.
,
McNeil
,
K.
, and
Galbraith
,
A.
,
2005
, “
A Complete Mock Circulation Loop for the Evaluation of Left, Right, and Biventricular Assist Devices
,”
Artif. Organs
,
29
(
7
), pp.
564
572
.10.1111/j.1525-1594.2005.29094.x
6.
Legendre
,
D.
,
Fonseca
,
J.
,
Andrade
,
A.
,
Biscegli
,
J. F.
,
Manrique
,
R.
,
Guerrino
,
D.
,
Prakasan
,
A. K.
,
Ortiz
,
J. P.
, and
Lucchi
,
J. C.
,
2008
, “
Mock Circulatory System for the Evaluation of Left Ventricular Assist Devices, Endoluminal Prostheses, and Vascular Diseases
,”
Artif. Organs
,
32
(
6
), pp.
461
467
.10.1111/j.1525-1594.2008.00569.x
7.
Zappe
,
R. W.
,
2004
,
Valve Selection Handbook
,
Elsevier
,
Boston
, pp.
73
75
.
8.
Gelman
,
S.
,
1995
, “
The Pathophysiology of Aortic Cross-Clamping and Unclamping
,”
Anesthesiology
,
82
(
4
), pp.
1026
1060
.10.1097/00000542-199504000-00027
9.
Watton
,
J.
,
2009
,
Fundamentals of Fluid Power Control
,
Cambridge University Press
,
New York
, pp.
74
79
.
10.
Liptak
,
B. G.
,
2005
,
Instrument Engineer's Handbook
,
CRC
,
Boca Raton
, pp.
559
566
.
11.
Miller
,
S.
,
2009
, “
Modeling Physical Systems as Physical Networks With the Simscape Language
,”
6th Vienna International Conference on Mathematical Modeling
,
Vienna, Austria, February 11–13
.
12.
The MathWorks
,
2010
, “
Simscape 3.0 User's Guide
,”
The MathWorks, Natick
,
MA
.
13.
Wu
,
Y.
,
Allaire
,
P. E.
,
Tao
,
G.
, and
Olsen
,
D.
,
2005
, “
Modeling, Estimation and Control of Cardiovascular Systems With a Left Ventricular Assist Device
,”
IEEE Trans. Control Syst. Technol.
,
15
(
4
), pp.
754
767
.10.1109/TCST.2006.890288
14.
Johansson
,
P.
, and
Andersson
,
B.
,
2008
, “
Comparison of Simulation Programs for Supercapacitor Modelling: Model Creation and Verification
,” Master's thesis, Chalmers University of Technology, Gothenburg, Sweden.
15.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley-Interscience
,
New York
, p.
114
.
16.
Segur
,
J. B.
, and
Oberstar
,
H. E.
,
1951
, “
Viscosity of Glycerol and Its Aqueous Solutions
,”
Ind. Eng. Chem.
,
43
(
9
), pp.
2117
2120
.10.1021/ie50501a040
17.
Dow Chemical Corporation
,
2011
, “
Viscosity of Aqueous Glycerine Solutions
,” http://www.dow.com/glycerine/resources/table18.htm
18.
Shankar
,
P. N.
, and
Kumar
,
M.
,
1994
, “
Experimental Determination of the Kinematic Viscosity of Glycerol-Water Mixtures
,”
Math. Phys. Sci.
,
444
(
1922
), pp.
573
581
.10.1098/rspa.1994.0039
19.
Dow Chemical Corporation
,
2011
, “
Density of Glycerine-Water Solutions
,” http://www.dow.com/glycerine/resources/table4_3140.htm
You do not currently have access to this content.