Currently, aortic valve replacement procedures require a sternotomy and use of cardiopulmonary bypass (CPB) to arrest the heart and provide a bloodless field in which to operate. A less invasive alternative to open heart surgery is transapical or transcatheter aortic valve replacement (TAVR), already emerging as a feasible treatment for patients with high surgical risk. The bioprosthetic valves are delivered via catheters using transarterial or transapical approaches and are implanted within diseased aortic valves. This paper reports the development of a new self-expanding stent for minimally invasive aortic valve replacement and its delivery device for the transapical approach under real-time magnetic resonance imaging (MRI) guidance. Made of nitinol, the new stent is designed to implant and embed a commercially available bioprosthetic aortic valve in aortic root. An MRI passive marker was affixed onto the stent and an MRI active marker to the delivery device. These capabilities were tested in ex vivo and in vivo experiments. Radial resistive force, chronic outward force, and the integrity of bioprosthesis on stent were measured through custom design dedicated test equipment. In vivo experimental evaluation was done using a porcine large animal model. Both ex vivo and in vivo experiment results indicate that the self-expanding stent provides adequate reinforcement of the bioprosthetic aortic valve and it is easier to implant the valve in the correct position. The orientation and positioning of the implanted valve is more precise and predictable with the help of the passive marker on stent and the active marker on delivery device. The new self-expanding nitinol stent was designed to exert a constant radial force and, therefore, a better fixation of the prosthesis in the aorta, which would result in better preservation of long-term heart function. The passive marker affixed on the stent and active marker embedded in the delivery devices helps to achieve precise orientation and positioning of the stent under MRI guidance. The design allows the stent to be retracted in the delivery device with a snaring catheter if necessary. Histopathology reports reveal that the stent is biocompatible and fully functional. All the stented bioprosthesis appeared to be properly seated in the aortic root.

References

References
1.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.10.1056/NEJMoa1008232
2.
Walther
,
T.
,
Möllmann
,
H.
,
Blumenstein
,
J.
, and
Kempfert
,
J.
,
2011
, “
Transcatheter Aortic Valve Implantation for Severe Aortic Stenosis—Overcoming the Challenges
,”
Interv. Cardiol.
,
6
(
2
), pp.
165
169
, available at http://www.touchbriefings.com/ebooks/A1tts5/Intcardio62/resources/71.htm
3.
Cribier
,
A.
,
2012
, “
Development of Transcatheter Aortic Valve Implantation (TAVI): A 20-Year Odyssey
,”
Arch. Cardiovasc. Dis.
,
105
(
3
), pp.
146
152
.10.1016/j.acvd.2012.01.005
4.
Cribier
,
A.
,
Eltchaninoff
,
H.
,
Bash
,
A.
,
Borenstein
,
N.
,
Tron
,
C.
,
Bauer
,
F.
,
Derumeaux
,
G.
,
Anselme
,
F.
,
Laborde
,
F.
, and
Leon
,
M. B.
,
2002
, “
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis. First Human Case Description
,”
Circulation
,
106
, pp.
3006
3008
.10.1161/01.CIR.0000047200.36165.B8
5.
Walther
,
T.
,
Simon
,
P.
,
Dewey
,
T.
,
Wimmer-Greinecker
,
G.
,
Falk
,
V.
,
Kasimir
,
M. T.
,
Doss
,
M.
,
Borger
,
M. A.
,
Schuler
,
G.
,
Glogar
,
D.
,
Fehske
,
W.
,
Wolner
,
E.
,
Mohr
,
F. W.
, and
Mack
,
M.
,
2007
, “
Transapical Minimally Invasive Aortic Valve Implantation: Multicenter Experience
,”
Circulation
,
116
(
11_suppl
), pp.
I-240
245
.10.1161/CIRCULATIONAHA.106.677237
6.
Chiam
,
P. T. L.
, and
Ruiz
,
C. E.
,
2008
, “
Percutaneous Transcatheter Aortic Valve Implantation: Assessing Results, Judging Outcomes, and Planning Trials: The Interventionalist Perspective
,”
JACC: Cardiovasc. Interv.
,
1
(
4
), pp.
341
350
.10.1016/j.jcin.2008.03.018
7.
Lichtenstein
,
S. V.
,
Cheung
,
A.
,
Ye
,
J.
,
Thompson
,
C. R.
,
Carere
,
R. G.
,
Pasupati
,
S.
, and
Webb
,
J. G.
,
2006
, “
Transapical Transcatheter Aortic Valve Implantation in Humans Initial Clinical Experience
,”
Circulation
,
114
, pp.
591
596
.10.1161/CIRCULATIONAHA.106.632927
8.
Thomas
,
M.
,
Schymik
,
G.
,
Walther
,
T.
,
Himbert
,
D.
,
Lefèvre
,
T.
,
Treede
,
H.
,
Eggebrecht
,
H.
,
Rubino
,
P.
,
Michev
,
I.
,
Lange
,
R.
,
Anderson
,
W. N.
, and
Wendler
,
O.
,
2010
, “
Thirty-Day Results of the SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) Registry
,”
Circulation
,
122
(
1
), pp.
62
69
.10.1161/CIRCULATIONAHA.109.907402
9.
Grube
,
E.
,
Schuler
,
G.
,
Buellesfeld
,
L.
,
Gerckens
,
U.
,
Linke
,
A.
,
Wenaweser
,
P.
,
Sauren
,
B.
,
Mohr
,
F.-W.
,
Walther
,
T.
,
Zickmann
,
B.
,
Iversen
,
S.
,
Felderhoff
,
T.
,
Cartier
,
R.
, and
Bonan
,
R.
,
2007
, “
Percutaneous Aortic Valve Replacement for Severe Aortic Stenosis in High-Risk Patients Using the Second- and Current Third-Generation Self-Expanding CoreValve Prosthesis: Device Success and 30-Day Clinical Outcome
,”
J. Am. Coll. Cardiol.
,
50
(
1
), pp.
69
76
.10.1016/j.jacc.2007.04.047
10.
Lamarche
,
Y.
,
Cartier
,
R.
,
Denault
,
A. Y.
,
Basmadjian
,
A.
,
Berry
,
C.
,
Laborde
,
J.-C.
, and
Bonan
,
R.
,
2007
, “
Implantation of the CoreValve Percutaneous Aortic Valve
,”
Ann. Thorac. Surg.
,
83
(
1
), pp.
284
287
.10.1016/j.athoracsur.2006.05.121
11.
Grube
,
E.
,
Laborde
,
J. C.
,
Gerckens
,
U.
,
Felderhoff
,
T.
,
Sauren
,
B.
,
Buellesfeld
,
L.
,
Mueller
,
R.
,
Menichelli
,
M.
,
Schmidt
,
T.
,
Zickmann
,
B.
,
Iversen
,
S.
, and
Stone
,
G. W.
,
2006
, “
Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease: The Siegburg First-in-Man Study
,”
Circulation
,
114
, pp.
1616
1624
.10.1161/CIRCULATIONAHA.106.639450
12.
Petronio
,
A. S.
,
De Carlo
,
M.
,
Bedogni
,
F.
,
Marzocchi
,
A.
,
Klugmann
,
S.
,
Maisano
,
F.
,
Ramondo
,
A.
,
Ussia
,
G. P.
,
Ettori
,
F.
,
Poli
,
A.
,
Brambilla
,
N.
,
Saia
,
F.
,
De Marco
,
F.
, and
Colombo
,
A.
,
2011
, “
Safety and Efficacy of the Subclavian Approach for Transcatheter Aortic Valve Implantation With the CoreValve Revalving System/Clinical Perspective
,”
Circulation: Cardiovascular Interventions
,
3
(
4
), pp.
359
366
.10.1161/CIRCINTERVENTIONS.109.930453
13.
Falk
,
V.
,
Walther
,
T.
,
Schwammenthal
,
E.
,
Strauch
,
J.
,
Aicher
,
D.
,
Wahlers
,
T.
,
Schäfers
,
J.
,
Linke
,
A.
, and
Mohr
,
F. W.
,
2011
, “
Transapical Aortic Valve Implantation With a Self-Expanding Anatomically Oriented Valve
,”
Eur. Heart J.
,
32
(
7
), pp.
878
887
.10.1093/eurheartj/ehq445
14.
Ferrari
,
M.
,
Figulla
,
H. R.
,
Schlosser
,
M.
,
Tenner
,
I.
,
Frerichs
,
I.
,
Damm
,
C.
,
Guyenot
,
V.
,
Werner
,
G. S.
, and
Hellige
,
G.
,
2004
, “
Transarterial Aortic Valve Replacement With a Self Expanding Stent in Pigs
,”
Heart
,
90
, pp.
1326
1331
.10.1136/hrt.2003.028951
15.
Kempfert
,
J.
,
Holzhey
,
D.
,
Rastan
,
A.
,
Schoenburg
,
M.
,
Treede
,
H.
,
Thielmann
,
M.
,
van Linden
,
A.
,
Njezic
,
B.
,
Blumenstein
,
J.
,
Mohr
,
F. W.
, and
Wather.
,
T.
,
2011
, “
Transapical Aortic Valve Implantation Using the Symetis Accurate™ Device: Initial Clinical Experience
,”
25th Annual Meeting of the European Association for Cardio-Thoracic Surgery (EACTS), Lisbon, Portugal, October 1–5.
16.
Boudjemline
,
Y.
, and
Bonhoeffer
,
P.
,
2002
, “
Steps Toward Percutaneous Aortic Valve Replacement
,”
Circulation
,
105
, pp.
775
778
.10.1161/hc0602.103361
17.
McVeigh
,
R. E.
,
Guttman
,
A. M.
,
Lederman
,
J. R.
,
Li
,
M.
,
Kocaturk
,
O.
,
Hunt
,
T.
,
Kozlov
,
S.
, and
Horvath
,
A. K.
,
2006
, “
Real-Time Interactive MRI-Guided Cardiac Surgery: Aortic Valve Replacement Using a Direct Apical Approach
,”
Magn. Reson. Med.
,
56
(
5
), pp.
958
964
.10.1002/mrm.21044
18.
Cribier
,
A.
,
Eltchaninoff
,
H.
,
Tron
,
C.
,
Bauer
,
F.
,
Agatiello
,
C.
,
Nercolini
,
D.
,
Tapiero
,
S.
,
Litzler
,
P.-Y.
,
Bessou
,
J.-P.
, and
Babaliaros
,
V.
,
2006
, “
Treatment of Calcific Aortic Stenosis With the Percutaneous Heart Valve: Mid-Term Follow-Up From the Initial Feasibility Studies: The French Experience
,”
J. Am. Coll. Cardiol.
,
47
(
6
), pp.
1214
1223
.10.1016/j.jacc.2006.01.049
19.
Dewey
,
T. M.
,
Walther
,
T.
,
Doss
,
M.
,
Brown
,
D.
,
Ryan
,
W. H.
,
Svensson
,
L.
,
Mihaljevic
,
T.
,
Hambrecht
,
R.
,
Schuler
,
G.
,
Wimmer-Greinecker
,
G.
,
Mohr
,
F. W.
, and
Mack
,
M. J.
,
2006
, “
Transapical Aortic Valve Implantation: An Animal Feasibility Study
,”
Ann. Thorac. Surg.
,
82
(
1
), pp.
110
116
.10.1016/j.athoracsur.2006.02.035
20.
Horvath
,
K. A.
,
Guttman
,
M.
,
Li
,
M.
,
Lederman
,
R. J.
,
Mazilu
,
D.
,
Kocaturk
,
O.
,
Karmarkar
,
P. V.
,
Hunt
,
T.
,
Kozlov
,
S.
, and
McVeigh
,
E. R.
,
2007
, “
Beating Heart Aortic Valve Replacement Using Real-Time MRI Guidance
,”
Innovations
,
2
(
2
), pp.
51
55
.10.1097/IMI.0b013e31805b8280
21.
Huber
,
C. H.
,
Cohn
,
L. H.
, and
von Segesser
,
L. K.
,
2005
, “
Direct-Access Valve Replacement a Novel Approach for Off-Pump Valve Implantation Using Valved Stents
,”
J. Am. Coll. Cardiol.
,
46
(
2
), pp.
366
370
.10.1016/j.jacc.2005.04.028
22.
Webb
,
J.
, and
Cribier
,
A.
,
2011
, “
Percutaneous Transarterial Aortic Valve Implantation: What Do We Know?
,”
Eur. Heart J.
,
32
(
2
), pp.
140
147
.10.1093/eurheartj/ehq453
23.
Webb
,
J. G.
,
Pasupati
,
S.
,
Humphries
,
K.
,
Thompson
,
C.
,
Altwegg
,
L.
,
Moss
,
R.
,
Sinhal
,
A.
,
Carere
,
R. G.
,
Munt
,
B.
,
Ricci
,
D.
,
Ye
,
J.
,
Cheung
,
A.
, and
Lichtenstein
,
S. V.
,
2007
, “
Percutaneous Transarterial Aortic Valve Replacement in Selected High-Risk Patients With Aortic Stenosis
,”
Circulation
,
116
(
7
), pp.
755
763
.10.1161/CIRCULATIONAHA.107.698258
24.
Walther
,
T.
,
Falk
,
V.
,
Borger
,
M. A.
,
Dewey
,
T.
,
Wimmer-Greinecker
,
G.
,
Schuler
,
G.
,
Mack
,
M.
, and
Mohr
,
F. W.
,
2007
, “
Minimally Invasive Transapical Beating Heart Aortic Valve Implantation—Proof of Concept
,”
Eur. J. Cardiothorac. Surg.
,
31
(
1
), pp.
9
15
.10.1016/j.ejcts.2006.10.034
25.
Duerig
,
T. W.
,
Tolomeo
,
D. E.
, and
Wholey
,
M.
,
2000
, “
An Overview of Superelastic Stent Design
,”
Min. Invas. Ther. Allied Technol.
,
9
(
3/4
), pp.
235
246
.10.1080/13645700009169654
26.
Stoeckel
,
D.
,
Pelton
,
A.
, and
Duerig
,
T.
,
2004
, “
Self-Expanding Nitinol Stents: Material and Design Considerations
,”
Eur. Radiol.
,
14
(
2
), pp.
292
301
.10.1007/s00330-003-2022-5
27.
David
,
A.
,
and Armitage
,
T. L. P. D. M. G.
,
2003
, “
Biocompatibility and Hemocompatibility of Surface-Modified NiTi Alloys
,”
J. Biomed. Mater. Res. A
,
66A
(
1
), pp.
129
137
.10.1002/jbm.a.10549
28.
Vojtech
,
D.
,
Joska
,
L.
, and
Leitner
,
J.
,
2008
, “
Influence of a Controlled Oxidation at Moderate Temperatures on the Surface Chemistry of Nitinol Wire
,”
Appl. Surf. Sci.
,
254
(
18
), pp.
5664
5669
.10.1016/j.apsusc.2008.03.014
29.
Wever
,
D. J.
,
Veldhuizen
,
A. G.
,
Sanders
,
M. M.
,
Schakenraad
,
J. M.
, and
van Horn
,
J. R.
,
1997
, “
Cytotoxic, Allergic and Genotoxic Activity of a Nickel-Titanium Alloy
,”
Biomaterials
,
18
(
16
), pp.
1115
1120
.10.1016/S0142-9612(97)00041-0
30.
Yeung
,
K. W. K.
,
Poon
,
R. W. Y.
,
Liu
,
X. Y.
,
Ho
,
J. P. Y.
,
Chung
,
C. Y.
,
Chu
,
P. K.
,
Lu
,
W. W.
,
Chan
,
D.
, and
Cheung
,
K. M. C.
,
2005
, “
Corrosion Resistance, Surface Mechanical Properties, and Cytocompatibility of Plasma Immersion Ion Implantation-Treated Nickel-Titanium Shape Memory Alloys
,”
J. Biomed. Mater. Res. A
,
75A
(
2
), pp.
256
267
.10.1002/jbm.a.30413
31.
Horvath
,
K. A.
,
Mazilu
,
D.
,
Guttman
,
M.
,
Zetts
,
A.
,
Hunt
,
T.
, and
Li
,
M.
,
2010
, “
Midterm Results of Transapical Aortic Valve Replacement via Real-Time Magnetic Resonance Imaging Guidance
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
2
), pp.
424
430
.10.1016/j.jtcvs.2009.08.005
32.
Horvath
,
A. K.
,
Li
,
M.
,
Mazilu
,
D.
,
Guttman
,
A. M.
, and
McVeigh
,
E., R.
,
2007
, “
Real-Time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures
,”
Semin. Thor. Cardiovasc. Surg.
,
19
(
4
), pp.
330
335
.10.1053/j.semtcvs.2007.10.006
33.
Horvath
,
A. K.
,
Mazilu
,
D.
,
Guttman
,
A. M.
, and
Li
,
M.
,
2009
, “
Beating Heart Aortic Valve Replacement Under Real Time MRI Guidance
,”
J. Surg. Res.
,
151
(
2
), pp.
225
226
.10.1016/j.jss.2008.11.132
34.
2010, “Guidance for Industry and FDA Staff—Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems,” Federal Register. U.S. Food and Drug Administration, Silver Spring, MD, available at http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm
35.
2005, “Cardiovascular Implants—Cardiac Valve Prostheses,” ISO 5840:2005, Federal Register. U.S. Food and Drug Administration, Silver Spring, MD, available at http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm193096.htm
36.
2010, “Draft Guidance for Industry and FDA Staff—Heart Valves—Investigational Device Exemption (IDE) and Premarket Approval (PMA) Applications,” ISO (International Organization for Standardization), Geneva, Switzerland, available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=34164
You do not currently have access to this content.