Lower-extremity orthosis is a type of wearable mechanical device that serves a wide variety of important biomedical purposes, such as gait assistance and rehabilitative training. Due primarily to the constraints associated with actuation technology, the majority of current lower-extremity orthoses are either passive or tethered to external power sources, limiting the functionality of such devices. In this paper, the authors present the research results towards a fully mobile (i.e., untethered) powered lower-limb orthosis, leveraging the high power density of pneumatic actuators for the joint power generation. The design of the orthosis is presented, with the objectives of providing full locomotive assistance in multiple common locomotive modes and generating a minimum level of restriction to the wearer's daily activities. For the control of the orthosis, a finite-state impedance-based controller is developed, which simulates an artificial impedance in order to enable the natural interaction with the wearer. Preliminary testing on a healthy subject demonstrated that the orthosis was able to provide a natural gait and a comfortable user experience in the treadmill walking experiments.

References

References
1.
Rose
,
G. K.
,
1986
,
Orthotics: Principles and Practice
,
Butterworth-Heinemann
,
London
.
2.
de Wit
,
D. C. M.
,
Buurke
,
J. H.
,
Nijlant
,
J. M. M.
,
Ilzerman
,
M. J.
, and
Hermens
,
H. J.
,
2004
, “
The Effect of an Ankle-Foot Orthosis on Walking Ability in Chronic Stroke Patients: A Randomized Controlled Trial
,”
Clin.Rehabil.
,
18
(
5
), pp.
550
557
.10.1191/0269215504cr770oa
3.
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2007
, “
Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients
,” Proceedings of the
IEEE
10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, June 13-15, pp.
401
407
.10.1109/ICORR.2007.4428456
4.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
.
5.
van der Kooij
,
H.
,
Koopman
,
B.
, and
van Asseldonk
,
E. H. F.
,
2008
, “
Body Weight Support by Virtual Model Control of an Impedance Controlled Exoskeleton (LOPES) for Gait Training
,” Annual International
IEEE
EMBS Conference, Vancouver, BC, Canada, August 20–25, pp.
1969
1972
.10.1109/IEMBS.2008.4649574
6.
Pratt
,
J. E.
,
Krupp
,
B. T.
, and
Morse
,
C. J.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot
,
29
(
3
), pp.
234
241
.10.1108/01439910210425522
7.
Blaya
,
J. A.
and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.10.1109/TNSRE.2003.823266
8.
Pratt
,
J. E.
,
Krupp
,
B. T.
,
Morse
,
C. J.
, and
Collins
,
S. H.
,
2004
, “
The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,” Proceedings of the
IEEE
International Conference on Robotics and Automation, New Orleans, LA, April 26–May 1, pp.
2430
2435
.10.1109/ROBOT.2004.1307425
9.
Tsukahara
,
A.
,
Kawanishi
,
R.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2010
, “
Sit-to-Stand and Stand-to-Sit Transfer Support for Complete Paraplegic Patients With Robot Suit HAL
,”
Adv. Rob.
,
24
(
11
), pp.
1615
1638
.10.1163/016918610X512622
10.
Farris
,
R. J.
,
Quintero
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
652
659
.10.1109/TNSRE.2011.2163083
11.
Roy
,
A.
,
Krebs
,
H. I.
,
Williams
,
D. J.
,
Bever
,
C. T.
,
Forrester
,
L. W.
,
Macko
,
R. M.
, and
Hogan
,
G.
,
2009
, “
Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
569
582
.10.1109/TRO.2009.2019783
12.
Strausser
,
K. A.
,
Swift
,
T. A.
,
Zoss
,
A. B.
, and
Kazerooni
,
H.
,
2010
, “
Prototype Medical Exoskeleton for Paraplegic Mobility: First Experimental Results
,”
Proceedings of the ASME Dynamic Systems and Control Conference
, Cambridge, MA, September 12–15,
ASME
Paper No. DSCC2010-4261, pp.
453
458
.10.1115/DSCC2010-4261
13.
Chu
,
A.
,
Kazerooni
,
H.
, and
Zoss
,
A.
,
2005
, “
On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,” Proceedings of the
IEEE
International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, pp.
4345
4352
.10.1109/ROBOT.2005.1570789
14.
Shorter
,
K. A.
,
Kogler
,
G. F.
,
Loth
,
E.
,
Durfee
,
W. K.
, and
Hsiao-Wecksler
,
E. T.
,
2011
, “
A Portable Powered Ankle-Foot Orthosis for Rehabilitation
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
459
472
.10.1682/JRRD.2010.04.0054
15.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2005
, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
.
16.
Costa
,
N.
, and
Caldwell
,
D. G.
,
2006
, “
Control of a Biomimetic ‘Soft-Actuated’ 10DoF Lower Body Exoskeleton
,” Proceedings of the
IEEE
/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics,
Pisa
,
Italy
, February 20–22, pp.
495
501
.10.1109/BIOROB.2006.1639137
17.
Kuribayashi
,
K.
,
1993
, “
Criteria for the Evaluation of New Actuators as Energy Converters
.”
Adv. Rob.
,
7
(
4
), pp.
289
307
.10.1163/156855393X00186
18.
Goldfarb
,
M.
,
Barth
,
E. J.
,
Gogola
,
M. A.
, and
Wehrmeyer
,
J. A.
,
2003
, “
Design and Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-Powered Robots
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
254
262
.10.1109/TMECH.2003.812842
19.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
2nd ed.
,
University of Waterloo Press
, Waterloo, Canada.
20.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait and Posture
,
15
, pp.
32
44
.10.1016/S0966-6362(01)00162-X
21.
Mak
,
M. K. Y.
,
Levin
,
O.
,
Mizrahi
,
J.
, and
Hui-Chan
,
C. W. Y.
,
2003
, “
Joint Torque During Sit-to-Stand in Healthy Subjects and People With Parkinson's Disease
,”
Clin.l Biomech.
,
18
, pp.
197
206
.10.1016/S0268-0033(02)00191-2
22.
Beater
,
P.
,
2007
,
Pneumatic Drives: System Design, Modelling and Control
,
Springer-Verlag
,
Berlin/Heidelberg
.
23.
Novacheck
,
T. F.
,
1998
, “
The Biomechanics of Running
,”
Gait and Posture
,
7
, pp.
77
95
.10.1016/S0966-6362(97)00038-6
24.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part 1: Theory
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
7
.10.1115/1.3140702
25.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part 2: Implementation
,”
ASME J. Dyn. Syst., Meas., Control
,
107
, pp.
8
16
.10.1115/1.3140713
26.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation—Part 3: Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
107
, pp.
17
24
.10.1115/1.3140701
27.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans Autom. Control
,
29
(
8
), pp.
681
690
.10.1109/TAC.1984.1103644
28.
Hogan
,
N.
,
1985
, “
The Mechanics of Multi-Joint Posture and Movement Control
,”
Biol. Cybern.
,
52
, pp.
315
331
.10.1007/BF00355754
29.
Mussa-Ivaldi
,
F. A.
,
Hogan
,
N.
, and
Bizzi
,
E.
,
1985
, “
Neural, Mechanical, and Geometric Factors Subserving Arm Posture in Humans
,”
J. Neurosci.
,
5
, pp.
2732
2743
.
30.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Robot. Res.
,
27
(
2
), pp.
263
273
.10.1177/0278364907084588
You do not currently have access to this content.