Magnetic Resonance Imaging (MRI) is a means to guide cardiac interventions and provide excellent soft tissue contrast while avoiding radiation hazards. This paper investigates and evaluates a new Magnetic Resonance (MR)-compatible catheter for cardiac catheterization. Important mechanical properties of the catheter are measured and investigated; these include flexibility, pushability, and torquability. The mechanical performance of the MR-compatible and steerable catheter is benchmarked against three commercially-available clinical ablation catheters that are not MR-compatible. The MR-compatibility of the proposed catheter is also evaluated through an experimental study inside a 1.5 T MRI scanner. The new catheter is shown to have a mechanical performance comparable to that of existing catheters while being MR compatible.

1.
Agabegi
,
E. D.
, and
Agabegi
,
S. S.
,
2008
,
Step-Up to Medicine (Step-Up Series)
,
Lippincott Williams & Wilkins
,
Hagerstown, MD
.
2.
Kovoor
,
P.
,
Ricciardello
,
M.
,
Collins
,
L.
,
Uther
,
J.
, and
Ross
,
D.
,
1998
, “
Risk to Patients From Radiation Associated With Radiofrequency Ablation for Supraventricular Tachycardia
,”
Circulation
,
98
, pp.
1534
1540
.10.1161/01.CIR.98.15.1534
3.
Faulkner
,
K.
,
Love
,
H. G.
,
Sweeney
,
J. K.
, and
Bardsley
,
R. A.
, “
Radiation Doses and Somatic Risk to Patients During Cardiac Radiological Procedures
,”
Br. J. Radiol.
,
59
, pp.
359
363
.10.1259/0007-1285-59-700-359
4.
Razavi
,
R.
,
Hill
,
D. L.
,
Keevil
,
S. F.
,
Miquel
,
M. E.
,
Muthurangu
,
V.
,
Hegde
,
S.
,
Rhode
,
K.
,
Barnett
,
M.
,
Vaals
,
J. V.
,
Hawkes
,
D. J.
, and
Baker
,
E.
,
2003
, “
Cardiac Catheterisation Guided by MRI in Children and Adults With Congenital Heart Disease
,”
Lancet
,
362
, pp.
1877
1882
.10.1016/S0140-6736(03)14956-2
5.
Bock
,
M.
, and
Wacker
,
F. K.
,
2008
, “
MR-Guided Intravascular Interventions: Techniques and Applications
,”
J. Magn. Reson. Imaging
,
27
(
2
), pp.
326
338
.10.1002/jmri.21271
6.
Muthurangu
,
V.
, and
Razavi
,
R. S.
,
2005
, “
The Value of Magnetic Resonance Guided Cardiac Catheterisation
,”
Heart
,
91
, pp.
995
996
.10.1136/hrt.2004.055137
7.
Raman
,
V. K.
, and
Lederman
,
R. J.
,
2007
, “
Interventional Cardiovascular Magnetic Resonance Imaging
,”
Trends Cardiovasc. Med.
,
17
(
6
), pp.
196
202
.10.1016/j.tcm.2007.05.003
8.
Rubin
,
D. L.
,
Ratner
,
A. V.
, and
Young
,
S. W.
,
1990
, “
Magnetic Susceptibility Effects and Their Application in the Development of New Ferromagnetic Catheters for Magnetic Resonance Imaging
,”
Invest. Radiol.
,
25
(
12
), pp.
1325
1332
.10.1097/00004424-199012000-00010
9.
Gassert
,
R.
,
Moser
,
R.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2006
, “
MRI/fMRI-Compatible Robotic System With Force Feedback for Interaction With Human Motion
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
216
224
.10.1109/TMECH.2006.871897
10.
Wildermuth
,
S.
,
Dumoulin
,
C. L.
,
Pfammatter
,
T.
,
Maier
,
S. E.
,
Hofmann
,
E.
, and
Debatin
,
J. F.
,
1998
, “
MR-Guided Percutaneous Angioplasty: Assessment of Tracking Safety, Catheter Handling and Functionality
,”
Cardiovasc. Intervent. Radiol.
,
21
, pp.
404
410
.10.1007/s002709900288
11.
Konings
,
M. K.
,
Bartels
,
L. W.
,
Smits
,
H. F. M.
, and
Bakker
,
C. J. G.
,
2000
, “
Heating Around Intravascular Guidewires by Resonating RF Waves
,”
J. Magn. Reson. Imaging
,
12
, pp.
79
85
.10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T
12.
Nitz
,
W. G.
,
Oppelt
,
A.
,
Renz
,
W.
,
Manke
,
C.
,
Lenhart
,
M.
, and
Link
,
J.
,
2001
, “
On the Heating of Linear Conductive Structures as Guidewires and Catheters in Interventional MRI
,”
J. Magn. Reson. Imaging
,
13
, pp.
105
114
.10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0
13.
Martin
,
A. J.
,
Baek
,
B.
,
Acevedo-Bolton
,
G.
,
Higashida
,
R.
,
Comstock
,
T. J.
, and
Saloner
,
D. A.
,
2009
, “
MR Imaging During Endovascular Procedures: An Evaluation of the Potential for Catheter Heating
,”
Magn. Reson. Med.
,
61
, pp.
45
53
.10.1002/mrm.21817
14.
Schench
,
J. F.
,
1996
, “
The Role of Magnetic Susceptibility in Magnetic Resonance Imaging: MRI Magnetic Compatibility of the First and Second Kinds
,”
Med. Phys.
,
23
(
6
), pp.
815
851
.10.1118/1.597854
15.
Martin
,
R. W.
, and
Johnson
,
C. C.
,
1989
, “
Engineering Considerations of Catheters for Intravascular Ultrasonic Measurements
,”
Proc. SPIE
,
1068
, pp.
198
206
.
16.
Carey
,
J.
,
Fahim
A.
, and
Munro
,
M.
,
2004
, “
Design of Braided Composite Cardiovascular Catheters Based on Required Axial, Flexural, and Torsional Rigidities
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
70
(
1
), pp.
73
78
.10.1002/jbm.b.30017
17.
Szold
,
A.
,
2006
, “
Nitinol: Shape-Memory and Super-Elastic Materials in Surgery
,”
Surg. Endosc.
,
20
, pp.
1493
1496
.10.1007/s00464-005-0867-1
18.
Duerig
,
T.
,
Pelton
,
A.
, and
Stockel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng.
,
A273–275
, pp.
149
160
.10.1016/S0921-5093(99)00294-4
19.
Kocaturk
,
O.
,
Saikusl
,
C. E.
,
Guttman
,
M. A.
,
Faranesh
,
A. Z.
,
Ratnayaka
,
K.
,
Ozturk
,
C.
,
McVeigh
,
E. R.
, and
Lederman
,
R. J.
,
2009
, “
Whole Shaft Visibility and Mechanical Performance for Active MR Catheters Using Copper-Nitinol Braided Polymer Tubes
,”
J. Cardiovasc. Magn. Reson.
,
11
(
29
), pp.
11
29
.10.1186/1532-429X-11-29
20.
O'Boyle
,
G. S.
, and
Gibson
,
C. A.
, III
,
2003
, “
MRI Ablation Catheter
,” U.S. Patent No. US0208252.
21.
Imricor
,
2011
, “
Imricor Medical Systems
,” http://www.imricor.com/
22.
Carey
,
J.
,
Emery
,
D.
, and
McCracken
,
P.
,
2006
, “
Buckling Test as a New Approach to Testing Flexural Rigidities of Angiographic Catheters
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
76
(
1
), pp.
211
218
.10.1002/jbm.b.30358
23.
Koningsyz
,
M. K.
,
van Leeuwenx
,
T. G.
,
Maliy
,
W. P.
, and
Viergevery
,
M. A.
,
1998
, “
Torsion Measurement of Catheters Using Polarized Light in a Single Glass Fibre
,”
Phys. Med. Biol.
,
43
, pp.
1049
1057
.10.1088/0031-9155/43/5/001
24.
Ceschinski
,
H.
,
Henkes
,
H.
,
Weinert
,
H.
,
Weber
,
W.
,
Kühne
,
D.
, and
Monstadt
,
H.
,
2000
, “
Torquability of Microcatheter Guidewires: The Resulting Torsional Moment
,”
Biomed. Mater. Eng.
,
10
(
1
), pp.
31
42
.
25.
Schmidt
,
W.
,
Lanzer
,
P.
,
Behrens
,
P.
,
Topoleski
,
L. D.
, and
Schmitz
,
K. P.
,
2009
, “
A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems
,”
Cathet. Cardiovasc. Intervent.
,
73
, pp.
350
360
.10.1002/ccd.21832
26.
Mekle
,
R.
,
Hofmann
,
E.
,
Scheffler
,
K.
, and
Bilecen
,
D.
,
2006
, “
A Polymer-Based MR-Compatible Guidewire: A Study to Explore New Prospects for Interventional Peripheral Magnetic Resonance Angiography (ipMRA)
,”
J. Magn. Reson. Imaging
,
23
, pp.
145
155
.10.1002/jmri.20486
27.
Brown
,
R. I.
,
Penn
,
I. M.
, and
Viera
,
F. M.
,
1995
, “
Case Report: A New Guidewire for Coronary Ablation
,”
Cathet. Cardiovasc. Diagn.
,
35
(
1
), pp.
59
63
.10.1002/ccd.1810350112
28.
Polygerinos
,
P.
,
Ataollahi
,
A.
,
Schaeffter
,
T.
,
Razavi
,
R.
,
Seneviratne
,
L. D.
, and
Althoefer
,
K.
,
2001
, “
MRI-Compatible Intensity-Modulated Force Sensor for Cardiac Catheterization Procedures
,”
IEEE Trans. Biomed. Eng.
,
58
(
3
), pp.
721
726
.10.1109/TBME.2010.2095853
29.
Ammann
,
P.
,
Rocca
,
H. P.
,
Angehrn
,
W.
,
Roelli
,
H.
,
Sagmeister
,
M.
, and
Rickli
,
H.
,
2003
, “
Procedural Complications Following Diagnostic Coronary Angiography are Related to the Operator's Experience and the Catheter Size
,”
Cathet. Cardiovasc. Intervent.
,
59
, pp.
13
18
.10.1002/ccd.10489
30.
Popov
,
E. P.
,
1990
,
Engineering Mechanics of Solids
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.