This paper describes the design of a compact, lightweight CT-compatible, drill-press that is designed to be used in either a hand-held or stand-alone mode to assist with percutaneous bone based interventions. Previous medical drilling tools that have been developed have a metal structure and typically have one actuator for advancing the drill (feed) and another for rotating it (speed). After defining the device functional requirements and specifications, a deterministic design process was followed to generate several design concepts that were then evaluated based on their ability to satisfy the functional requirements. A final concept that uses a custom screw-spline to achieve helical motion of a shaft that is attached to a standard orthopedic drill was selected for prototyping. The design uses a single actuator to drive both the screw and spline nuts through two different gear ratios, resulting in a fixed ratio between the feed and speed. Apart from the motor which is placed away from the central drill axis, the device is largely made from plastic materials. A custom experimental setup was developed that enabled drilling into bone inside a CT scanner to be examined. Results showed that the device was successfully able to penetrate thick cortical bone and that its structure did not appreciably distort the medical images.

References

References
1.
Gogna
,
A.
,
Peh
,
W. C. G.
, and
Munk
,
P. L.
,
2008
, “
Image-Guided Musculoskeletal Biopsy
,”
Radiol. Clin. North Am.
,
46
(
3
), pp.
455
473
.10.1016/j.rcl.2008.04.014
2.
Pinto
,
C. H.
,
Taminiau
,
A. H. M.
,
Vanderschueren
,
G. M.
,
Hogendoorn
,
P. C. W.
,
Bloem
,
J. L.
, and
Obermann
,
W. R.
,
2002
, “
Technical Considerations in CT-Guided Radiofrequency Thermal Ablation of Osteoid Osteoma: Tricks of the Trade
,”
Am. J. Roentgenol.
,
179
(
6
), pp.
1633
1642
.
3.
Sierre
,
S.
,
Innocenti
,
S.
,
Lipsich
,
J.
,
Lanfranchi
,
L.
,
Questa
,
H.
, and
Moguillansky
,
S.
,
2006
, “
Percutaneous Treatment of Osteoid Osteoma by CT-Guided Drilling Resection in Pediatric Patients
,”
Pediatr. Radiol.
,
36
(
2
), pp.
115
118
.10.1007/s00247-005-0032-y
4.
Ahlstrom
,
K. H.
, and
Astrom
,
K. G.
,
1993
, “
CT-Guided Bone Biopsy Performed by Means of a Coaxial Biopsy System With an Eccentric Drill
,”
Radiology
,
188
(
2
), pp.
549
552
.
5.
Gupta
,
R.
,
Grasruck
,
M.
,
Suess
,
C.
,
Bartling
,
S.
,
Schmidt
,
B.
,
Stierstorfer
,
K.
,
Popescu
,
S.
,
Brady
,
T.
, and
Flohr
,
T.
,
2006
, “
Ultra-High Resolution Flat-Panel Volume CT: Fundamental Principles, Design Architecture, and System Characterization
,”
Eur. Radiol.
,
16
(
6
), pp.
1191
1205
.10.1007/s00330-006-0156-y
6.
Labadie
,
R.
,
Chodhury
,
P.
,
Cetinkaya
,
E.
,
Balachandran
,
R.
,
Haynes
,
D.
,
Fenlon
,
M.
,
Jusczyzck
,
A.
, and
Fitzpatrick
,
M.
,
2005
, “
Minimally Invasive, Image-Guided, Facial-Recess Approach to the Middle Ear: Demonstration of the Concept of Percutaneous Cochlear Access In Vitro
,”
Otology and Neurotology: official publication of the American Otological Society, American Neurotology Society and European Academy of Otology and Neurotology
,
26
(
4
), pp.
557
562
.
7.
Buckley
,
O.
,
Benfayed
,
W.
,
Geoghegan
,
T.
,
Al-Ismail
,
K.
,
Munk
,
P. L.
, and
William
,
C. T.
,
2007
, “
CT-Guided Bone Biopsy: Initial Experience With a Commercially Available Hand Held Black and Deckerâ Drill
,”
Eur. J. Radiol.
,
61
(
1
), pp.
176
180
.10.1016/j.ejrad.2006.06.015
8.
Onogi
,
S.
,
Morimoto
,
K.
,
Sakuma
,
I.
,
Nakajima
,
Y.
,
Koyama
,
T.
,
Sugano
,
N.
,
Tamura
,
Y.
,
Yonenobu
,
S.
, and
Momoi
,
Y.
,
2005
, “Development of the Needle Insertion Robot for Percutaneous Vertebroplasty,” MICCAI'05 Proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol. Part II, Springer-Verlag, Berlin/Heidelberg, pp. 105–113.
9.
Majdani
,
O.
,
Rau
,
T.
,
Baron
,
S.
,
Eilers
,
H.
,
Baier
,
C.
,
Heimann
,
B.
,
Ortmaier
,
T.
,
Bartling
,
S.
,
Lenarz
,
T.
, and
Leinung
,
M.
,
2009
, “
A Robot-Guided Minimally Invasive Approach for Cochlear Implant Surgery: Preliminary Results of a Temporal Bone Study
,”
Int. J. Comput. Assisted Radiology and Surgery
,
4
(
5
), pp.
475
486
.10.1007/s11548-009-0360-8
10.
Warren
,
F. M.
,
Balachandran
,
R.
,
Fitzpatrick
,
J. M.
, and
Labadie
,
R. F.
,
2007
, “
Percutaneous Cochlear Access Using Bone-Mounted, Customized Drill Guides: Demonstration of Concept In Vitro
,”
Otol. Neurotol.
,
28
(
3
), pp.
325
329
.10.1097/01.mao.0000253287.86737.2e
11.
Labadie
,
R. F.
,
Noble
,
J. H.
,
Dawant
,
B. M.
,
Balachandran
,
R.
,
Majdani
,
O.
, and
Fitzpatrick
,
J. M.
,
2008
, “
Clinical Validation of Percutaneous Cochlear Implant Surgery: Initial Report
,”
Laryngoscope
,
118
(
6
), pp.
1031
1039
.10.1097/MLG.0b013e31816b309e
12.
Chung
,
G. B.
,
Lee
,
S. G.
,
Kim
,
S.
,
Yi,
,
B.-J.
,
Kim
,
W.-K.
,
Oh
,
S. M
,
Kim
,
Y.-S.
,
Park
,
J. I.
, and
Oh
,
S. H.
,
2005
, “
A Robot-Assisted Surgery System for Spinal Fusion,”
2005
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, August 2–6, pp.
3015
3021
.10.1109/IROS.2005.1545552
13.
Tsai
,
T.-C.
, and
Hsu
,
Y.-L.
,
2004
, “Development of a Parallel Surgical Robot With Automatic Bone Drilling Carriage for Stereotactic Neurosurgery,” 2004
IEEE
International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, October 10–13, Vol. 3, pp.
2156
2161
.10.1109/ICSMC.2004.1400646
14.
Hsu
,
Y.-L.
,
Lee
,
S.-T.
, and
Lin
,
H.-W.
,
2001
, “
A Modular Mechatronic System for Automatic Bone Drilling
,”
Biomed. Eng. Appl. Basis and Communications
,
13
(
4
), pp.
168
174
.10.4015/S1016237201000212
15.
Cole
,
J. D.
, and
Durham
,
A. G.
,
1990
, “
Medical Drill Assembly Transparent to X-Rays and Targeting Drill Bit
,” U.S. Patent No. 5,013,317.
16.
Hillery
,
M. T.
, and
Shuaib
,
I.
,
1996
,
The Drilling of Bone Using Guide Wires and Twist Drills
,
M. T.
Hillery
, ed., Proceedings of the 13th Irish Manufacturing Conference (IMC-13),
Limerick
,
Ireland
, September 4–6, pp.
33
42
.
17.
Hillery
,
M. T.
, and
Shuaib
,
I.
,
1999
, “
Temperature Effects in the Drilling of Human and Bovine Bone
,”
J. Mater. Process. Technol.
,
92
, pp.
302
308
.10.1016/S0924-0136(99)00155-7
18.
Lundskog
,
J.
,
1972
, “
Heat and Bone Tissue. An Experimental Investigation of the Thermal Properties of Bone and Threshold Levels for Thermal Injury
,”
Scand. J. Plast. Reconstr. Surg.
, Suppl.
9
, pp.
1
80
.
19.
Ohashi
,
H.
,
Therin
,
M.
,
Meunier
,
A.
, and
Christel
,
P.
,
1994
, “
The Effect of Drilling Parameters on Bone
,”
J. Mater. Sci. Mater. Med.
,
5
(
4
), pp.
225
231
.10.1007/BF00121093
20.
Walsh
,
C.
,
Hanumara
,
N.
,
Slocum
,
A.
,
Shepard
,
J.
, and
Gupta
,
R.
,
2008
, “
A Patient-Mounted, Telerobotic Tool for CT-Guided Percutaneous Interventions
,”
ASME J. Med. Devices
, 2(1), p. 011007.10.1115/1.2902854
21.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
, Dearborn, MI.
22.
Zivanovic
,
A.
,
Dibble
,
E.
, and
Davies
,
B.
,
2006
, “
A High Force Haptic System for Knee Arthroscopy Training
,”
Int. J. Humanoid Robotics (IJHR)
,
3
(
4
), pp.
429
437
.10.1142/S0219843606000849
You do not currently have access to this content.