Up to eight percent of patients develop steal syndrome after prosthetic dialysis access graft placement, which is characterized by low blood flow to the hand. Steal syndrome results in a cold hand, pain, and in extreme cases, loss of function and tissue damage. A practical and easy way of adjusting the fluidic resistance in a graft to attenuate the risk of steal physiology would greatly benefit both surgeons and patients. This paper describes the design and development of a device that can be attached to a dialysis access graft at the time of surgical implantation to enable providers to externally adjust the resistance of the graft postoperatively. Bench level flow experiments and magnetic setups were used to establish design requirements and test prototypes. The Graft Resistance Adjustment Mechanism (GRAM) can be applied to a standard graft before or after it is implanted and a non-contact magnetic coupling enables actuation through the skin for graft compression. The device features a winch-driven system to provide translational movement for a graft compression unit. We expect such a device to enable noninvasive management of steal syndrome in a manner that does not change the existing graft and support technologies, thus reducing patient complications and reducing costs to hospitals.

References

References
1.
Goff
,
C. D.
,
Sato
,
D. T.
,
Bloch
,
P. H.
,
DeMasi
,
R. J.
,
Gregory
,
R. T.
,
Gayle
,
R. G.
,
Parent
,
F. N.
,
Meier
,
G. H.
, and
Wheeler
,
J. R.
, 2000, “
Steal Syndrome Complicating Hemodialysis Access Procedures: Can It Be Predicted?
,”
Ann. Vasc. Surg.
,
14
(
2
), pp.
138
144
.
2.
Schild
,
A. F.
, 2010, “
Maintaining Vascular Access: the Management of Hemodialysis Arteriovenous Grafts
,”
J. Vasc. Access
,
11
(
2
), pp.
92
99
.
3.
Kian
,
K.
, and
Asif
,
A.
, 2010, “
Status of Research in Vascular Access for Dialysis
,”
Nephrol. Dial. Transplant
,,
25
(
11
), pp.
3682
3686
.
4.
Batiste
,
S.
, 2010, “
A-V Dialysis Graft
,” U.S. Patent No. 7833186.
5.
Claude
,
T. J.
,
Barlow
,
E. A.
,
Hunter
,
D. W.
, and
Rosenberg
,
M. S.
, 2010, “
Dialysis Valve and Method
,” U.S. Patent No. 7811264.
6.
Hsiai
,
T. K.
,
Soundararajan
,
G.
,
Kim
,
E. S.
,
Yu
,
H.
,
Mahsa
,
R.
, and
Lin
,
T.
, 2008, “
MEMS Vascular Sensor
,” U.S. Patent No. 7367327.
7.
Decampli
,
W. M.
, 1998, “
Apparatus and Methods for Providing Selectively Adjustable Blood Flow Through a Vascular Graft
,” U.S. Patent No. 5797879.
8.
Mollenauer
,
K. H.
,
Hermann
,
G. D.
,
Howell
,
T. A.
, and
Monfort
,
M. Y.
, 1994, “
Adjustable Valve Having a Radially Compressible Sealing Body
,” U.S. Patent No. 5338313.
9.
Assad
,
S. R.
,
Monreira
,
A. M.
, and
De Cunha Neto
,
M.
, 2008, “
Pulmonary Artery Banding Device
,” U.S. Patent No. 0097497.
10.
Batiste
,
S.
, and
Achstein
,
S.
, 2010, “
Self Adjusting Venous Equalizing Graft
,” U.S. Patent No. 0234789.
11.
Henderson
,
J.
, 2008, “
Smart Textile Vascular Graft
,” U.S. Patent No. 0114434.
12.
Chandran
,
K. B.
,
Rittgers
,
S. E.
, and
Yoganathan
,
A. P.
, 2007,
Biofluid Mechanics: the Human Circulation
,
CRC Press
,
Boca Raton, FL
, pp.
128
, Chap. 4.
13.
Robertson
,
W.
,
Cazzolato
,
B.
, and
Zander
,
A.
, 2010, “
Maximising the Force Between Two Cuboid Magnets
,”
Magn. Lett.
,
1
, p.
9000102
.
You do not currently have access to this content.