The spine naturally has a nonlinear force-deflection characteristic which facilitates passive stability, and thus there is a need for spinal implants that duplicate this behavior to provide stabilization when the spine loses stiffness through injury, degeneration, or surgery. Additionally, due to the complexity and variability in the mechanics of spinal dysfunction, implants could potentially benefit from incorporating a customizable stiffness into their design. This paper presents a spinal implant with contact-aided inserts that provide a customizable nonlinear stiffness. An analytical model was utilized to optimize the device design, and the model was then verified using a finite element model. Validation was performed on physical prototypes, first in isolation using a tensile tester and then using cadaveric testing on an in-house spine tester. Testing confirmed the performance of the implant and it was observed that the device increased mechanical stability to the spinal segment in flexion-extension and lateral-bending.

References

References
1.
Ong
,
K.
,
Lau
,
E.
,
Ianuzzi
,
A.
,
Villaraga
,
M.
, and
Kurtz
,
S.
, 2008. “
Future Demand in Spinal Fusions: US Projections to 2030
,” in
Scientific Exhibit 75th Annual Meeting of the American Associations of Orthopaedic Surgeons
,
San Francisco
,
CA.
2.
Panjabi
,
M. M.
,
Krag
,
M. H.
, and
Chung
,
T. Q.
, 1984. “
Effects of Disc Injury on Mechanical Behavior of the Human Spine
,”
Spine
,
9
(
7
), pp.
707
713
.
3.
Kulig
,
K.
,
Powers
,
C.
,
Landel
,
R.
,
Chen
,
H.
,
Fredericson
,
M.
,
Guillet
,
M.
, and
Butts
,
K.
, 2007, “
Segmental Lumbar Mobility in Individuals With Low Back Pain: In Vivo Assessment During Manual and Self-Imposed Motion Using Dynamic MRI
,”
BMC Musculoskeletal Disorders
,
8
(
1
), p.
8
.
4.
Kottke
,
F. J.
, 1961, “
Evaluation and Treatment of Low Back Pain Due to Mechanical Causes
,”
Arch. Phys. Med. Rehab.
,
42
, pp.
426
440
.
5.
Schnake
,
K. J.
,
Putzier
,
M.
,
Haas
,
N. P.
, and
Kandziora
,
F.
, 2006, “
Mechanical Concepts for Disc Regeneration
,”
Eur. Spine J.
,
15
(
Suppl 3
), pp.
354
360
.
6.
Kirkaldy-Willis
,
W. H.
, and
Farfan
,
H. F.
, 1982, “
Instability of the Lumbar Spine
,”
Clin. Orthop. Relat. Res.
,
165
, pp.
110
123
.
7.
Brechbühler
,
D.
,
Markwalder
,
T. M.
, and
Braun
,
M.
, 1998, “
Surgical Results After Soft System Stabilization of the Lumbar Spine in Degenerative Disc Disease—Long-Term Results
,”
Acta Neurochirurgica
,
140
(
6
), pp.
521
525
.
8.
Gillet
,
P.
, 2003, “
The Fate of the Adjacent Motion Segments After Lumbar Fusion.
Spine
,
28
, pp.
338
345
.
9.
Denoziere
,
G.
, and
Ku
,
D. N.
, 2006, “
Biomechanical Comparison Between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc
,”
J. Biomech.
,
39
(
4
), pp.
766
775
.
10.
Frei
,
H.
,
Oxland
,
T. R.
,
Rathonyi
,
G. C.
, and
Nolte
,
L.
, 2001, “
The Effect of Nucleotomy on Lumbar Spine Mechanics in Compression and Shear Loading
,”
Spine
,
26
(
19
), pp.
2080
2089
.
11.
Goael
,
V. K.
,
Nishiyama
,
K.
,
Weinstein
,
J. N.
, and
Liu
,
Y. K.
, 1986, “
Mechanical Properties of Lumbar Spinal Motion Segments As Affected by Partial Disc Removal
,”
Spine
,
11
(
10
), pp.
1008
1012
.
12.
Hallab
,
N. J.
,
Cunningham
,
B. W. M.
, and
Jacobs
,
J. J.
, 2003, “
Spinal Implant Debris-Induced Osteolysis
,”
Spine
,
28
(20S)
, pp.
S125
S138
.
13.
Hilibrand
,
A. S.
, and
Robbins
,
M.
, 2004. “
Adjacent Segment Degeneration and Adjacent Segment Disease: The Consequences of Spinal Fusion?
,”
Spine J.
,
4
(
6 Suppl
), pp.
190S
194S
.
14.
Ishihara
,
H.
,
Osada
,
R.
,
Kanamori
,
M.
,
Kawaguchi
,
Y.
,
Ohmori
,
K.
,
Kimura
,
T.
,
Matsui
,
H.
, and
Tsuji
,
H.
, 2001, “
Minimum 10-Year Follow-Up Study of Anterior Lumbar Interbody Fusion for Isthmic Spondylolisthesis
,”
J. Spinal Disorders Techniques
,
14
(
2
), pp.
91
99
.
15.
Kumar
,
M. N.
,
Jacquot
,
F.
, and
Hall
,
H.
, 2001, “
Long-Term Follow-Up of Functional Outcomes and Radiographic Changes at Adjacent Levels Following Lumbar Spine Fusion for Degenerative Disc Disease
,”
Eur. Spine J.
,
10
(
4
), pp.
309
313
.
16.
Anderson
,
P. A.
, and
Rouleau
,
J. P.
, 2004, “
Intervertebral Disc Arthroplasty
,”
Spine
,
29
(
23
), pp.
2779
2786
.
17.
Schizas
,
C.
,
Duff
,
J. M.
,
Tessitore
,
E.
, and
Faundez
,
A.
, 2009. “
Non Fusion Techniques in Spinal Surgery
,”
Rev. Med. Suisse
,
5
(
230
), pp.
2574
2577
.
18.
Sengupta
, 2005, “
Dynamic Stabilization Devices in the Treatment of Low Back Pain
,”
Neurology India
,
53
(4)
, pp.
466
474
.
19.
Sung
,
E.
,
Slocum
, Jr.,
A. H.
,
Ma
,
R.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
, 2011, “
Design of an Ankle Rehabilitation Device Using Compliant Mechanisms
,”
ASME J. Med. Devices
,
5
(
1
), p.
011001
.
20.
Benzel
,
E. C.
,
Lieberman
,
I. H.
,
Ross
,
E. R.
,
Linovitz
,
R. J.
,
Kuras
,
J.
, and
Zimmers
,
K.
, 2011, “
Mechanical Characterization of a Viscoelastic Disc for Lumbar Total Disc Replacement
,”
ASME J. Med. Devices
,
5
(
1
), p.
011005
.
21.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
, 2012, “
A Compliant Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,”
Int. J. Spine Surg.
(in press).
22.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
John Wiley
,
New York
.
23.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
, 2011, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
J. Mech. Robotics
,
3
(
4
), p.
041008
.
24.
Panjabi
,
M. M.
,
Goel
,
V.
,
Oxland
,
T.
,
Takata
,
K.
,
Duranceau
,
J.
,
Krag
,
M.
, and
Price
,
M.
, 1992, “
Human Lumbar Vertebrae Quantitative Three-Dimensional Anatomy
,”
Spine
,
17
(
3
), pp.
299
306
.
25.
Natarajan
,
R. N.
, and
Andersson
,
G. B. J.
, 1999, “
The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading
,”
Spine
,
24
(
18
), pp.
1873
1881
.
26.
Oskouian
,
R. J.
,
Whitehill
,
R.
,
Samii
,
A.
,
Shaffrey
,
M. E.
,
Johnson
,
J. P.
, and
Shaffrey
,
C. I.
, 2004, “
The Future of Spinal Arthroplasty: A Biomaterial Perspective
,”
Neurosurg. Focus
,
17
(
3
), p.
E2
.
27.
Hellier
,
W. G.
,
Hedman
,
T. P.
, and
Kostuik
,
J. P.
, 1992, “
Wear Studies for Development of an Intervertebral Disc Prosthesis
,”
Spine
,
17
(
6
), pp.
S86
S96
.
28.
Kurtz
,
S. M.
,
van Ooij
,
A.
,
Ross
,
R.
,
de Waal Malefijt
,
J.
,
Peloza
,
J.
,
Ciccarelli
,
L.
, and
Villarraga
,
M. L.
, 2007, “
Polyethylene Wear and Rim Fracture in Total Disc Arthroplasty
,”
Spine J.
,
7
(
1
), pp.
12
21
.
29.
Van Ooij
,
A.
,
Kurtz
,
S. M.
,
Stessels
,
F.
,
Noten
,
H.
, and
van Rhijn
,
L.
, 2007, “
Polyethylene Wear Debris and Long-Term Clinical Failure of the Charité Disc Prosthesis: A Study of 4 Patients
,”
Spine
,
32
(
2
), pp.
223
229
.
30.
Hirakawa
,
K.
,
Bauer
,
T. W.
,
Stulberg
,
B. N.
, and
Wilde
,
A. H.
, 1996, “
Comparison and Quantitation of Wear Debris of Failed Total Hip and Total Knee Arthroplasty
,”
J. Biomed. Mater. Res.
,
31
(
2
), pp.
257
263
.
31.
Wasielewski
,
R. C.
,
Galante
,
J. O.
,
Leighty
,
R. M.
,
Natarajan
,
R. N.
, and
Rosenberg
,
A. G.
, 1994, “
Wear Patterns on Retrieved Polyethylene Tibial Inserts and Their Relationship to Technical Considerations During Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
31
43
.
32.
Dumbleton
,
J. H.
,
Manley
,
M. T.
, and
Edidin
,
A. A.
, 2002, “
A Literature Review of the Association Between Wear Rate and Osteolysis in Total Hip Arthroplasty
,”
J. Arthroplasty
,
17
(
5
), pp.
649
661
.
33.
Ambati
,
D. V.
, 2010, “
Effect of Design Variables on Biomechanics of Lumbar Spine Implanted With Single, Multilevel and Hybrid Posterior Dynamic Stabilization Systems
,” MS thesis, Bioengineering, University of Toledo, Toledo, OH.
34.
Ahn
,
Y.
,
Chen
,
W.
,
Lee
,
K.
,
Park
,
K.
, and
Lee
,
S.
, 2008, “
Comparison of the Load-Sharing Characteristics Between Pedicle-Based Dynamic and Rigid Rod Devices
,”
Biomed. Mater.
,
3
(
4
), p.
044101
.
35.
Stokes
,
I. A. F.
, and
Iatridis
,
J. C.
, 2004, “
Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload Versus Immobilization
,”
Spine
,
29
(
23
), pp.
2724
2732
.
36.
Casesnoves
,
F.
, 2010, “
Computational Simulations of the Anterior Vertebral Surface for Optimal Surgical Instrumentation Design
,”
ASME J. Med. Devices
,
4
(
2
), p.
027506
.
37.
Gertzbein
,
S. D.
,
Seligman
,
J.
,
Holtby
,
R.
,
Chan
,
K. H.
,
Kapasouri
,
A.
,
Tile
,
M.
, and
Cruickshank
,
B.
, 1985, “
Centrode Patterns and Segmental Instability in Degenerative Disc Disease
,”
Spine
,
10
(
3
), pp.
257
261
.
38.
Miyazaki
,
M.
,
Hong
,
S. W.
,
Yoon
,
S. H.
,
Zou
,
J.
,
Tow
,
B.
,
Alanay
,
A.
,
Abitbol
,
J.
, and
Wang
,
J. C.
, 2008, “
Kinematic Analysis of the Relationship Between the Grade of Disc Degeneration and Motion Unit of the Cervical Spine
,”
Spine
,
33
(
2
), pp.
187
193
.
39.
Hudson
,
W. R.
,
Gee
,
J. E.
,
Billys
,
J. B.
, and
Castellvi
,
A. E.
, 2011, “
Hybrid Dynamic Stabilization With Posterior Spinal Fusion in the Lumbar Spine
,”
SAS J.
,
5
(
2
), pp.
36
43
.
40.
Castellvi
,
A. E.
,
Huang
,
H.
,
Vestgaarden
,
T.
,
Saigal
,
S.
,
Clabeaux
,
D. H.
, and
Pienkowski
,
D.
, 2007, “
Stress Reduction in Adjacent Level Discs Via Dynamic Instrumentation: A Finite Element Analysis
,”
SAS J.
,
1
(
2
), pp.
74
81
.
41.
Yue
,
J. J.
,
Timm
,
J. P.
,
Panjabi
,
M. M.
, and
La Torre
,
J. J.
, 2007, “
Clinical Application of the Panjabi Neutral Zone Hypothesis: The Stabilimax NZ Posterior Lumbar Dynamic Stabilization System
,”
Neurosurg. Focus
,
22
(
1
), pp.
1
3
.
42.
Bender
,
T. J.
, 1955, “
Mechanical Basis of Low Back Pain
,”
J. Med. Assoc. State Alabama
,
24
(
9
), pp.
217
218
.
43.
Goel
,
V. K.
,
Kim
,
Y. E.
,
Lim
,
T.-H.
, and
Weinstein
,
J. N.
, 1988, “
An Analytical Investigation of the Mechanics of Spinal Instrumentation
,”
Spine
,
13
(
9
), pp.
1003
1011
.
44.
Okuyama
,
K.
,
Abe
,
E.
,
Suzuki
,
T.
,
Tamura
,
Y.
,
Chiba
,
M.
, and
Sato
,
K.
, 2000, “
Can Insertional Torque Predict Screw Loosening and Related Failures?: An In Vivo Study of Pedicle Screw Fixation Augmenting Posterior Lumbar Interbody Fusion
,”
Spine
,
25
(
7
), pp.
858
864
.
45.
Upasani
,
V. V.
,
Farnsworth
,
C. L.
,
Tomlinson
,
T.
,
Chambers
,
R. C.
,
Tsutsui
,
S.
,
Slivka
,
M. A.
,
Mahar
,
A. T.
, and
Newton
,
P. O.
, 2009, “
Pedicle Screw Surface Coatings Improve Fixation in Nonfusion Spinal Constructs
,”
Spine
,
34
(
4
), pp.
335
343
.
46.
Stratton
,
E.
,
Howell
,
L. L.
, and
Bowden
,
A.
, 2010, “
Force-Displacement Model of the Flexsure™ Spinal Implant
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, Aug. 15–18, DETC2010-28476.
47.
Jacobsen
,
J. O.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
J. Mech. Robotics
,
2
(
1
), p.
011003
.
48.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2009, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Machine Theory
,
44
(
11
), pp.
2098
2109
.
49.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
, 1971, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
J. Eng. Ind.
,
93
, pp.
263
267
.
50.
Dodgen
,
E.
,
Howell
,
L. L.
, and
Bowden
,
A.
, 2011, “
Spinal Implant With Adjustable and Nonlinear Stiffness
,”
Proceedings of ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Aug. 29–30, DETC2011-28476.
51.
ASTM, 2004, “
Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model
,” Tech. Rep. F1717–04, ASTM International, West Conshohocken, PA.
52.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
, 2003, “
Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.
53.
Zirbel
,
S. A.
, 2011, “
Characterization of the Mechanical Response of the Lumbar Spine
,” Master’s thesis, Brigham Young University.
54.
Guan
,
Y.
,
Yoganandan
,
N.
,
Moore
,
J.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Maiman
,
D. J.
, and
Laud
,
P.
, 2007, “
Moment-Rotation Responses of the Human Lumbosacral Spinal Column
,”
J. Biomech.
,
40
(
9
), pp.
1975
1980
.
55.
Okushima
,
Y.
,
Yamazaki
,
N.
,
Matsumoto
,
M.
,
Chiba
,
K.
,
Nagura
,
T.
, and
Toyama
,
Y.
, 2006, “
Lateral Translation of the Lumbar Spine: In Vitro Biomechanical Study
,”
J. Appl. Biomech.
,
22
(
2
), pp.
83
92
.
56.
Lee
,
R. Y.
, and
Evans
,
J. H.
, 2000, “
The Role of Spinal Tissues in Resisting Posteroanterior Forces Applied to the Lumbar Spine
,”
J. Manipulative Physiol. Ther.
,
23
(
8
), pp.
551
556
.
57.
McGlashen
,
K. M.
,
Miller
,
J. A. A.
,
Schultz
,
A. B.
, and
Andersson
,
G. B. J.
, 1987, “
Load Displacement Behavior of the Human Lumbosacral Joint
,”
J. Orthop. Res.
,
5
(
4
), pp.
488
496
.
58.
Ravi
,
B.
,
Zahrai
,
A.
, and
Rampersaud
,
R.
, 1976, “
Clinical Accuracy of Computer-Assisted Two-Dimensional Fluoroscopy for the Percutaneous Placement of Lumbosacral Pedicle Screws
,”
Spine
,
36
(
1
), pp.
84
91
.
59.
Wu
,
S. S.
,
Edwards
,
W. T.
, and
Yuan
,
H. A.
, 1998, “
Stiffness Between Different Directions of Transpedicular Screws and Vertebra
,”
Clin. Biomech.
,
13
(
1S1
), pp.
S1
S8
.
60.
Ludwig
,
S. C.
,
Kramer
,
D. L.
,
Balderston
,
R. A.
,
Vaccaro
,
A. R.
,
Foley
,
K. F.
, and
Albert
,
T. J.
, 2000, “
Placement of Pedicle Screws in the Human Cadaveric Cervical Spine: Comparative Accuracy of Three Techniques
,”
Spine
,
25
(
13
), pp.
1655
1667
.
61.
Sapkas
,
G. S.
,
Papadakis
,
S. A.
,
Stathakopoulos
,
D. P.
,
Papagelopoulos
,
P. J.
,
Badekas
,
A. C.
, and
Kaiser
,
J. H.
, 1999. “
Evaluation of Pedicle Screw Position in Thoracic and Lumbar Spine Fixation Using Plain Radiographs and Computed Tomography. A Prospective Study of 35 Patients
,”
Spine
,
24
(
18
), pp.
1926
1929
.
You do not currently have access to this content.