Mechanical stimulation is essential for chondrocyte metabolism and cartilage matrix deposition. Traditional methods for evaluating developing tissue in vitro are destructive, time consuming, and expensive. Nondestructive evaluation of engineered tissue is promising for the development of replacement tissues. Here we present a novel instrumented bioreactor for dynamic mechanical stimulation and nondestructive evaluation of tissue mechanical properties and extracellular matrix (ECM) content. The bioreactor is instrumented with a video microscope and load cells in each well to measure tissue stiffness and an ultrasonic transducer for evaluating ECM content. Chondrocyte-laden hydrogel constructs were placed in the bioreactor and subjected to dynamic intermittent compression at 1 Hz and 10% strain for 1 h, twice per day for 7 days. Compressive modulus of the constructs, measured online in the bioreactor and offline on a mechanical testing machine, did not significantly change over time. Deposition of sulfated glycosaminoglycan (sGAG) increased significantly after 7 days, independent of loading. Furthermore, the relative reflection amplitude of the loaded constructs decreased significantly after 7 days, consistent with an increase in sGAG content. This preliminary work with our novel bioreactor demonstrates its capabilities for dynamic culture and nondestructive evaluation.

References

References
1.
Guilak
,
F.
,
Butler
,
D. L.
, and
Goldstein
,
S. A.
, 2001, “
Functional Tissue Engineering: The Role of Biomechanics in Articular Cartilage Repair
,”
Clin. Orthop. Relat. Res.
,
391
(Suppl), pp.
S295
305
.
2.
Villanueva
,
I.
,
Hauschulz
,
D. S.
,
Mejic
,
D.
, and
Bryant
,
S. J.
, 2008, “
Static and Dynamic Compressive Strains Influence Nitric Oxide Production and Chondrocyte Bioactivity When Encapsulated in Peg Hydrogels of Different Crosslinking Densities
,”
Osteoarthritis Cartilage
,
16
(
8
), pp.
909
918
.
3.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P. H.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2000, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
J. Biomech. Eng.
,
122
(
3
), pp.
252
260
.
4.
Smith
,
R. L.
,
Donlon
,
B. S.
,
Gupta
,
M. K.
,
Mohtai
,
M.
,
Das
,
P.
,
Carter
,
D. R.
,
Cooke
,
J.
,
Gibbons
,
G.
,
Hutchinson
,
N.
, and
Schurman
,
D. J.
, 1995, “
Effects of Fluid-Induced Shear on Articular Chondrocyte Morphology and Metabolism In Vitro
,”
J. Orthop. Res.
,
13
(
6
), pp.
824
831
.
5.
Angele
,
P.
,
Yoo
,
J. U.
,
Smith
,
C.
,
Mansour
,
J.
,
Jepsen
,
K. J.
,
Nerlich
,
M.
, and
Johnstone
,
B.
, 2003, “
Cyclic Hydrostatic Pressure Enhances the Chondrogenic Phenotype of Human Mesenchymal Progenitor Cells Differentiated In Vitro
,”
J. Orthop. Res.
,
21
(
3
), pp.
451
457
.
6.
Preiss-Bloom
,
O.
,
Mizrahi
,
J.
,
Elisseeff
,
J.
, and
Seliktar
,
D.
, 2009, “
Real-Time Monitoring of Force Response Measured in Mechanically Stimulated Tissue-Engineered Cartilage
,”
Artif. Organs
,
33
(
4
), pp.
318
327
.
7.
Hagenmuller
,
H.
,
Hitz
,
M.
,
Merkle
,
H. P.
,
Meinel
,
L.
, and
Muller
,
R.
, 2010, “
Design and Validation of a Novel Bioreactor Principle to Combine Online Micro-Computed Tomography Monitoring and Mechanical Loading in Bone Tissue Engineering
,”
Rev. Sci. Instrum.
,
81
(
1
), p.
014303
.
8.
Rice
,
M. A.
,
Waters
,
K. R.
, and
Anseth
,
K. S.
, 2009, “
Ultrasound Monitoring of Cartilaginous Matrix Evolution in Degradable Peg Hydrogels
,”
Acta Biomater.
,
5
(
1
), pp.
152
161
.
9.
Töyräs
,
J.
,
Nieminen
,
H. J.
,
Laasanen
,
M. S.
,
Nieminen
,
M. T.
,
Korhonen
,
R. K.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2002, “
Ultrasonic Characterization of Articular Cartilage
,”
Biorheology
,
39
(
1–2
), pp.
161
169
.
10.
Senzig
,
D. A.
,
Forster
,
F. K.
, and
Olerud
,
J. E.
, 1992, “
Ultrasonic Attenuation in Articular Cartilage
,”
J. Acoust. Soc. Am.
,
92
(
2
Pt 1), pp.
676
681
.
11.
Shung
,
K. K.
, and
Thieme
,
G. A.
, 1993,
Ultrasonic Scattering in Biological Tissues
,
CRC Press
,
Boca Raton, FL
.
12.
Laasanen
,
M. S.
,
Saarakkala
,
S.
,
Toyras
,
J.
,
Hirvonen
,
J.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
, 2003, “
Ultrasound Indentation of Bovine Knee Articular Cartilage In Situ
,”
J. Biomech.
,
36
(
9
), pp.
1259
1267
.
13.
Nieminen
,
H. J.
,
Saarakkala
,
S.
,
Laasanen
,
M. S.
,
Hirvonen
,
J.
,
Jurvelin
,
J. S.
, and
Toyras
,
J.
, 2004, “
Ultrasound Attenuation in Normal and Spontaneously Degenerated Articular Cartilage
,”
Ultrasound Med. Biol.
,
30
(
4
), pp.
493
500
.
14.
Saarakkala
,
S.
,
Laasanen
,
M. S.
,
Jurvelin
,
J. S.
,
Torronen
,
K.
,
Lammi
,
M. J.
,
Lappalainen
,
R.
, and
Toyras
,
J.
, 2003, “
Ultrasound Indentation of Normal and Spontaneously Degenerated Bovine Articular Cartilage
,”
Osteoarthritis Cartilage
,
11
(
9
), pp.
697
705
.
15.
Saarakkala
,
S.
,
Toyras
,
J.
,
Hirvonen
,
J.
,
Laasanen
,
M. S.
,
Lappalainen
,
R.
, and
Jurvelin
,
J. S.
, 2004, “
Ultrasonic Quantitation of Superficial Degradation of Articular Cartilage
,”
Ultrasound Med. Biol.
,
30
(
6
), pp.
783
792
.
16.
Toyras
,
J.
,
Rieppo
,
J.
,
Nieminen
,
M. T.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 1999, “
Characterization of Enzymatically Induced Degradation of Articular Cartilage Using High Frequency Ultrasound
,”
Phys. Med. Biol.
,
44
(
11
), pp.
2723
2733
.
17.
Joiner
,
G. A.
,
Bogoch
,
E. R.
,
Pritzker
,
K. P.
,
Buschmann
,
M. D.
,
Chevrier
,
A.
, and
Foster
,
F. S.
, 2001, “
High Frequency Acoustic Parameters of Human and Bovine Articular Cartilage Following Experimentally-Induced Matrix Degradation
,”
Ultrason. Imaging
,
23
(
2
), pp.
106
116
.
18.
Rieppo
,
J.
,
Töyräs
,
J.
,
Nieminen
,
M. T.
,
Kovanen
,
V.
,
Hyttinen
,
M. M.
,
Korhonen
,
R. K.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2003, “
Structure-Function Relationships in Enzymatically Modified Articular Cartilage
,”
Cells Tissues Organs
,
175
(
3
), pp.
121
132
.
19.
Agemura
,
D. H.
,
O’Brien
,
W. D.
Jr.
,
Olerud
,
J. E.
,
Chun
,
L. E.
, and
Eyre
,
D. E.
, 1990, “
Ultrasonic Propagation Properties of Articular Cartilage at 100 MHz
,”
J. Acoust. Soc. Am.
,
87
(
4
), pp.
1786
1791
.
20.
Wang
,
Q.
,
Zheng
,
Y. P.
,
Qin
,
L.
,
Huang
,
Q. H.
,
Lam
,
W. L.
,
Leung
,
G.
,
Guo
,
X.
, and
Lu
,
H. B.
, 2008, “
Real-Time Ultrasonic Assessment of Progressive Proteoglycan Depletion in Articular Cartilage
,”
Ultrasound Med. Biol.
,
34
(
7
), pp.
1085
1092
.
21.
Laasanen
,
M. S.
,
Toyras
,
J.
,
Vasara
,
A.
,
Saarakkala
,
S.
,
Hyttinen
,
M. M.
,
Kiviranta
,
I.
, and
Jurvelin
,
J. S.
, 2006, “
Quantitative Ultrasound Imaging of Spontaneous Repair of Porcine Cartilage
,”
Osteoarthritis Cartilage
,
14
(
3
), pp.
258
263
.
22.
Kuroki
,
H.
,
Nakagawa
,
Y.
,
Mori
,
K.
,
Kobayashi
,
M.
,
Okamoto
,
Y.
,
Yasura
,
K.
,
Nishitani
,
K.
, and
Nakamura
,
T.
, 2007, “
Sequential Changes in Implanted Cartilage After Autologous Osteochondral Transplantation: Postoperative Acoustic Properties Up to 1 Year in an In Vivo Rabbit Model
,”
Arthroscopy
,
23
(
6
), pp.
647
654
.
23.
Chérin
,
E.
,
Saïed
,
A.
,
Pellaumail
,
B.
,
Loeuille
,
D.
,
Laugier
,
P.
,
Gillet
,
P.
,
Netter
,
P.
, and
Berger
,
G.
, 2001, “
Assessment of Rat Articular Cartilage Maturation Using 50-MHz Quantitative Ultrasonography
,”
Osteoarthritis Cartilage
,
9
(
2
), pp.
178
186
.
24.
Rice
,
M. A.
,
Homier
,
P. M.
,
Waters
,
K. R.
, and
Anseth
,
K. S.
, 2008, “
Effects of Directed Gel Degradation and Collagenase Digestion on the Integration of Neocartilage Produced by Chondrocytes Encapsulated in Hydrogel Carriers
,”
J. Tissue Eng. Regen. Med.
,
2
(
7
), pp.
418
429
.
25.
Lin-Gibson
,
S.
,
Bencherif
,
S.
,
Cooper
,
J. A.
,
Wetzel
,
S. J.
,
Antonucci
,
J. M.
,
Vogel
,
B. M.
,
Horkay
,
F.
, and
Washburn
,
N. R.
, 2004, “
Synthesis and Characterization of Peg Dimethacrylates and Their Hydrogels
,”
Biomacromolecules
,
5
(
4
), pp.
1280
1287
.
26.
Nicodemus
,
G. D.
, and
Bryant
,
S. J.
, 2008, “
The Role of Hydrogel Structure and Dynamic Loading on Chondrocyte Gene Expression and Matrix Formation
,”
J. Biomech.
,
41
(
7
), pp.
1528
1536
.
27.
Bryant
,
S. J.
,
Nuttelman
,
C. R.
, and
Anseth
,
K. S.
, 2000, “
Cytocompatibility of UV and Visible Light Photoinitiating Systems on Cultured NiH/3t3 Fibroblasts In Vitro
,”
J. Biomater. Sci. Polym. Ed.
,
11
(
5
), pp.
439
457
.
28.
Kim
,
Y. J.
,
Sah
,
R. L.
,
Doong
,
J. Y.
, and
Grodzinsky
,
A. J.
, 1988, “
Fluorometric Assay of DNA in Cartilage Explants Using Hoechst 33258
,”
Anal. Biochem.
,
174
(
1
), pp.
168
176
.
29.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
, 1986, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
,
883
(
2
), pp.
173
177
.
30.
Edwards
,
C. A.
, and
O’Brien
,
W. D.
, Jr.
, 1980, “
Modified Assay for Determination of Hydroxyproline in a Tissue Hydrolyzate
,”
Clin. Chim. Acta
,
104
(
2
), pp.
161
167
.
31.
Grad
,
S.
,
Eglin
,
D.
,
Alini
,
M.
, and
Stoddart
,
M. J.
, 2011, “
Physical Stimulation of Chondrogenic Cells In Vitro: A Review
,”
Clin. Orthop. Relat. Res.
,
469
(
10
), pp.
2764
2772
.
32.
Lee
,
D. A.
, and
Bader
,
D. L.
, 1997, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
,
15
(
2
), pp.
181
188
.
33.
Mauck
,
R. L.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
Influence of Seeding Density and Dynamic Deformational Loading on the Developing Structure/Function Relationships of Chondrocyte-Seeded Agarose Hydrogels
,”
Ann. Biomed. Eng.
,
30
(
8
), pp.
1046
1056
.
34.
Lujan
,
T. J.
,
Wirtz
,
K. M.
,
Bahney
,
C. S.
,
Madey
,
S. M.
,
Johnstone
,
B.
, and
Bottlang
,
M.
, 2011, “
A Novel Bioreactor for the Dynamic Stimulation and Mechanical Evaluation of Multiple Tissue-Engineered Constructs
,”
Tissue Eng. Part C Methods
,
17
(
3
), pp.
367
374
.
35.
Lasher
,
R. A.
,
Wolchok
,
J. C.
,
Parikh
,
M. K.
,
Kennedy
,
J. P.
, and
Hitchcock
,
R. W.
, 2010, “
Design and Characterization of a Modified T-Flask Bioreactor for Continuous Monitoring of Engineered Tissue Stiffness
,”
Biotechnol. Prog.
,
26
(
3
), pp.
857
864
.
36.
Mason
,
S. S.
,
Kohles
,
S. S.
,
Zelick
,
R. D.
,
Winn
,
S. R.
, and
Saha
,
A. K.
, 2011, “
Three-Dimensional Culture of Cells and Matrix Biomolecules for Engineered Tissue Development and Biokinetics Model Validation
,”
J. Nanotechnol. Eng. Med.
,
2
(
2
), pp.
25001
25007
.
You do not currently have access to this content.