Braided wire stents demonstrate distinct characteristics compared to welded ones. In this study, both braided and welded wire stents with the same nominal dimensions were crimped inside a sheath and then deployed into a stenosed artery using finite element analysis. The braided wire stent was generated by overlapping wires to form crisscross shape. A welded wire stent was created by welding the intersection points of wires to avoid sliding between wires. The effect of fabrication technique on mechanical behavior of Nitinol wire stents was evaluated. The results showed that relative sliding between wires reduced the deformation of the braided stent, which led to less radial strength than the welded one; therefore, the deployed braided stent was more conformed to the anatomic shape of the lesion and much less efficient for restoring the patency of the stenotic artery. Post balloon-dilation was commonly used to improve its performance in terms of lumen gain and deployed shape of the stent. On the contrary, the welded wire stent exhibited a high capacity for pushing the occlusion outward. It reached an approximately uniform shape after deployment. The welded joints caused larger deformation and high strain on the stent struts, which indicate a potential earlier failure for the welded stent. In addition, higher contact pressure at the stent-lesion interface and higher arterial stresses were observed in the artery supported by the welded stent. The peak stress concentration may increase the occurrence of neointimal hyperplasia.

References

References
1.
Stoeckel
,
D.
,
Pelton
,
A.
, and
Duerig
,
T.
, 2004, “
Self-Expanding Nitinol Stents: Material and Design Considerations
,”
Eur. Radiol.
,
14
(
2
), pp.
292
301
.
2.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Auricchio
,
F.
, and
Dubini
,
G.
, 2004, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction with the Vascular Wall
,”
Biomech. Model. Mechanobiol.
,
2
(
4
), pp.
205
217
.
3.
Wu
,
W.
,
Qi
,
M.
,
Liu
,
X. P.
,
Yang
,
D. Z.
, and
Wang
,
W. Q.
, 2007, “
Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
,
40
(
13
), pp.
3034
3040
.
4.
Conti
,
M.
,
Auricchio
,
F.
, De
Beule
,
M.
, and
Verhegghe
,
B.
, 2009, “
Numerical Simulation of Nitinol Peripheral Stents: From Laser-Cutting to Deployment in a Patient Specific Anatomy
,”
Proceedings of the 8th European Symposium on Martensitic Transformations
, Prague, Czech Republic.
5.
Rebelo
,
N.
,
Fu
,
R.
, and
Lawrenchuk
,
M.
, 2009, “
Study of a Nitinol Stent Deployed into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading
,”
J. Mater. Eng. Perform.
,
18
(
5–6
), pp.
655
663
.
6.
Kim
,
J. H.
,
Kang
,
T. J.
, and
Yu
,
W. R.
, 2008, “
Mechanical Modeling of Self-Expandable Stent Fabricated using Braiding Technology
,”
J. Biomech.
,
41
(
15
), pp.
3202
3212
.
7.
Kim
,
J. H.
,
Kang
,
T. J.
, and
Yu
,
W. R.
, 2010, “
Simulation of Mechanical Behavior of Temperature-Responsive Braided Stents made of Shape Memory Polyurethanes
,”
J. Biomech.
,
43
(
4
), pp.
632
643
.
8.
De Beule
,
M.
,
Van Cauter
,
S.
,
Mortier
,
P.
,
Van Loo
,
D.
,
Van Impe
,
R.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, 2009, “
Virtual Optimization of Self-Expandable Braided Wire Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
448
453
.
9.
Rebelo
,
N.
,
Walker
,
N.
, and
Foadian
,
H.
, 2001, “
Simulation of Implantable Nitinol Stents
,”
Proceedings of the 2001 Abaqus Users Conference
, Providence, Rhode Island, USA.
10.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
, 2010, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
551
561
.
11.
De Beule
,
M.
,
Mortier
,
P.
,
Carlier
,
S. G.
,
Verhegghe
,
B.
, Van
Impe
,
R.
, and
Verdonck
,
P.
, 2008, “
Realistic Finite Element-Based Stent Design: The Impact of Balloon Folding
,”
J. Biomech.
,
41
(
2
), pp.
383
389
.
12.
Dunn
,
A. C.
,
Zaveri
,
T. D.
,
Keselowsky
,
B. G.
, and
Sawyer
,
W. G.
, 2007, “
Macroscopic Friction Coefficient Measurements on Living Endothelial Cells
,”
Tribol. Lett.
,
27
(
2
), pp.
233
238
.
13.
Elezi
,
S.
,
Kastrati
,
A.
,
Neumann
,
F. J.
,
Hadamitzky
,
M.
,
Dirschinger
,
J.
, and
Schomig
,
A.
, 1998, “
Vessel Size and Long-Term Outcome after Coronary Stent Placement
,”
Circulation
,
98
(
18
), pp.
1875
1880
.
14.
Tanaka
,
N.
,
Martin
,
J. B.
,
Tokunaga
,
K.
,
Abe
,
T.
,
Uchiyama
,
Y.
,
Hayabuchi
,
N.
,
Berkefeld
,
J.
, and
Rufenacht
,
D. A.
, 2004, “
Conformity of Carotid Stents with Vascular Anatomy: Evaluation in Carotid Models
,”
AJNR Am. J. Neuroradiol.
,
25
(
4
), pp.
604
607
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15090350.
15.
Zahora
,
J.
,
Bezrouk
,
A.
, and
Hanus
,
J.
, 2007, “
Models of Stents - Comparison and Applications
,”
Physiol. Res.
,
56
pp.
S115
S121
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17552887.
16.
Drexel
,
M.
,
Selvaduray
,
G.
, and
Pelton
,
A.
, 2007, “
The Effects of Cold Work and Heat Treatment on the Properties of Nitinol Wire
,”
Proceedings of the Materials and Processes for Medical Devices Conference
, Palm Desert, California, USA.
17.
Stoeckel
,
D.
,
Bonsignore
,
C.
, and
Duda
,
S.
, 2002, “
A Survey of Stent Designs
,”
Minimally Invasive Ther. Allied Technol.
,
11
(
4
), pp.
137
147
.
18.
Kan
,
H. C.
, 2010, “
Investigation of Plaque Effects on Cardiovascular Stent System
,”
Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE)
, Chengdu, P. R. C.
19.
Timmins
,
L. H.
,
Meyer
,
C. A.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2008, “
Effects of Stent Design and Atherosclerotic Plaque Composition on Arterial Wall Biomechanics
,”
J. Endovasc. Ther.
,
15
(
6
), pp.
643
654
.
20.
Shi
,
D.
,
Liao
,
S. H.
, and
Geng
,
J. P.
, 2010, “
A Newly Designed Big Cup Nitinol Stent for Gastric Outlet Obstruction
,”
World J. Gastroenterol.
,
16
(
33
), pp.
4206
4209
.
21.
Duerig
,
T. W.
,
Tolomeo
,
D. E.
, and
Wholey
,
M.
, 2000, “
An Overview of Superelastic Stent Design
,”
Minimally Invasive Ther. Allied Technol.
,
9
(
3–4
), pp.
235
246
.
22.
Weizsacker
,
H. W.
, and
Pinto
,
J. G.
, 1988, “
Isotropy and Anisotropy of the Arterial Wall
,”
J. Biomech.
,
21
(
6
), pp.
477
487
.
23.
Gamero
,
L. G.
,
Armentano
,
R. L.
, and
Levenson
,
J.
, 2002, “
Arterial Wall Diameter and Viscoelasticity Variability
,”
Comput. Cardiol.
,
29
,
513
516
.
24.
Liang
,
D. K.
,
Yang
,
D. Z.
,
Qi
,
M.
, and
Wang
,
W. Q.
, 2005, “
Finite Element Analysis of the Implantation of a Balloon-Expandable Stent in a Stenosed Artery
,”
Int. J. Cardiol.
,
104
(
3
), pp.
314
318
.
You do not currently have access to this content.