This paper describes a single degree-of-freedom active-knee transfemoral prosthesis to be used as a test bed for the development of architectures for myoelectric control. The development of an active-knee transfemoral prosthesis is motivated by the inability of passive commercial prostheses to provide the joint power required at the knee for many activities of daily living such as reciprocal stair ascent, which requires knee power outputs of up to 4 W/kg. Study of myoelectric control based on surface electromyogram (EMG) measurements of muscles in the residual limb is motivated by the desire to restore direct volitional control of the knee using a minimally-invasive neuromuscular control interface. The presented work describes the design of a transfemoral prosthesis prototype including the structure, actuation, instrumentation, electronics, and real-time control architecture. The performance characteristics of the prototype are discussed in the context of the requisite knee energetics for a variety of common locomotive functions. This paper additionally describes the development of a single-subject diagnostic socket with wall-embedded surface EMG electrodes and the implementation of a control architecture for myoelectric modulation of knee impedance. Experimental results of level walking for a single subject with unilateral transfemoral amputation demonstrate the potential for direct EMG-based control of locomotive function.

References

References
1.
McFadyen
,
B. J.
, and
Winter
,
D. A.
, 1988, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
(
9
), pp.
733
744
.
2.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
, 1999, “
Joint Powers in Stair Climbing at Different Slopes
,”
Proceedings of the IEEE International Conference on Engineering in Medicine and Biology
,
1
, pp.
530
.
3.
Nadeau
,
S.
,
McFadyen
,
B. J.
, and
Malouin
F.
, 2003, “
Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What are the Challenges Compared to Level Walking?
,”
Clin. Biomech. (Bristol, Avon)
,
18
(
10
), pp.
950
959
.
4.
Lay
,
A. N.
,
Hass
,
C. J.
,
Nichols
,
T. R.
, and
Gregor
R. J.
, 2007, “
The Effects of Sloped Surfaces on Locomotion: An Electromyographic Analysis
,”
J. Biomech.
,
40
(
6
), pp.
1276
1285
.
5.
Vanezis
,
A.
, and
Lees
,
A.
, 2005, “
A Biomechanical Analysis of Good and Poor Performers of the Vertical Jump
,”
Ergonomics
,
48
(
11–14
), pp.
1594
1603
.
6.
Kaufmann
,
K. R.
,
Levine
,
J. A.
,
Brey
,
R. H.
,
Iverson
,
B. K.
,
McGrady
,
S. K.
,
Padgett
,
D. J.
, and
Joyner
,
M. J.
, 2007, “
Gait and Balance of Transfemoral Amputees Using Passive and Mechanical and Microprocessor-Controlled Prosthetic Knees
,”
Gait and Posture
,
26
, pp.
489
493
.
7.
Segal
,
A. D.
,
Oreddurff
,
M.
,
Kute
,
G.
,
McDowell
,
M.
,
Pecoraro
,
J.
,
Shofer
,
J.
, and
Czerniecki
,
J.
, 2006, “
Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg and Mauch SNS Prosthetic Knees
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
857
870
.
8.
Hoffman
,
M. D.
,
Sheldahl
,
L. M.
,
Buley
,
K. J.
, and
Sandford
,
P. R.
, 1997, “
Physiological Comparison of Walking Among Bilateral Above-Knee Amputee and Able-Bodied Subjects, and a Model to Account for the Differences in Metabolic Cost
,”
Arch. Phys. Med. Rehabil.
,
78
(
4
), pp.
385
392
.
9.
Ziegler-Graham
,
K.
,
MacKenzie
,
E.
,
Ephraim
,
P.
,
Travison
,
T.
, and
Brookmeyer
,
R.
, 2008, “
Estimating the Prevalence of Limb Loss in the United States - 2005 to 2050
,”
Arch. Phys. Med. Rehabil.
,
89
, pp.
422
429
.
10.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
, 2009, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.
11.
Hitt
,
J. K.
,
Sugar
,
T. G.
,
Holgate
,
M. A.
, and
Bellman
,
R.
, 2010, “
An Active Foot-Ankle Prosthesis With Biomechanical Energy Regeneration
,”
ASME J. Med. Devices
,
4
(
1
), pp.
011003
.
12.
Fite
,
K.
,
Mitchell
,
J.
,
Sup
,
F.
, and
Goldfarb
,
M.
, 2007, “
Design and Control of an Electrically Powered Knee Prosthesis
,”
Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics
, pp.
902
905
.
13.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
, 2008, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Robot. Res.
,
27
(
2
), pp.
263
273
.
14.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
, 2009, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
667
676
.
15.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
, 2011, “
Upslope Walking Control of a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
1
), pp.
71
78
.
16.
Waycaster
,
G.
,
Wu
,
S.
, and
Shen
,
X.
, 2010, “
A Pneumatic Artificial Muscle Actuated Above-Knee Prosthesis
,”
Proceedings of ASME Dynamic Systems and Controls Conference
, Cambridge, MA, Paper No. DSCC2010-4097.
17.
Wu
,
S.
,
Waycaster
,
G.
, and
Shen
,
X.
, 2010, “
Active Knee Prosthesis Control With Electromyography
,”
Proceedings of ASME Dynamic Systems and Controls Conference
, Cambridge, MA, Paper No. DSCC2010-4068.
18.
Hoover
,
C.
, and
Fite
,
K.
, 2010, “
Preliminary Evaluation of Myoelectric Control of an Active Transfemoral Prosthesis During Stair Ascent
,”
Proceedings ASME Dynamic Systems and Controls Conference
, Cambridge, MA, Paper No. DSCC2010-4158.
19.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
, 2009, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
361
374
.
20.
Össur, “
Össur Homepage
,” Reykjavík, Iceland, http://www.ossur.comhttp://www.ossur.com.
21.
Stein
,
J.
, and
Flowers
,
W.
, 1987, “
Stance Phase Control of Above-Knee Prostheses: Knee Control Versus SACH Foot Design
,”
J. Biomech.
,
20
(
1
), pp.
19
28
.
22.
Horn
,
G. W.
, 1972, “
Electro-Control: An EMG-Controlled A/K Prosthesis
,”
Med. Biol. Eng.
,
10
(
1
), pp.
61
73
.
23.
Saxena
,
S. C.
, and
Mukhopadhyay
,
P.
, 1977, “
E.M.G. Operated Electronic Artificial-Leg Controller
,”
Med. Biol. Eng. Comput.
,
15
(
5
), pp.
553
557
.
24.
Donath
,
M.
, 1974, “
Proportional EMG Control for Above Knee Prostheses
,” M.S. thesis, MIT, Cambridge, MA.
25.
Peeraer
,
L.
,
Aeyels
,
B.
, and
Van der Perre
,
G.
, 1990, “
Development of EMG-Based Mode and Intent Recognition Algorthims for a Computer-Controlled Above-Knee Prosthesis
,”
J. Biomed. Eng.
,
12
(
3
), pp.
178
182
.
26.
Huang
,
H.
,
Kuiken
,
T. A.
, and
Lipschutz
,
R. D.
, 2009, “
A Strategy for Identifying Locomotion Modes Using Surface Electromyography
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
65
73
.
27.
Ha
,
K. H.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
, 2011, “
Volitional Control of a Prosthetic Knee Using Surface Electromyography
,”
IEEE Trans. Biomed. Eng.
,
58
(
1
), pp.
144
151
.
28.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wooten
,
M. E.
, 1990, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
, pp.
383
392
.
29.
Winter
,
D.
, 2009,
Biomechanics and Motor Control of Human Movement
,
4th ed.
,
Wiley
,
New York
.
30.
Abul-Haj
,
C. J.
, and
Hogan
,
N.
, 1990, “
Functional Assessment of Control Systems for Cybernetic Elbow Prostheses—Part I: Description of the Technique and Part II: Application of the Technique
,”
IEEE Trans. Biomed. Eng.
,
37
(
11
), pp.
1025
1047
.
You do not currently have access to this content.