One of the maladaptive changes following a heart attack is an initial decline in pumping capacity, which leads to activation of compensatory mechanisms, and subsequently, a phenomenon known as cardiac or left ventricular remodeling. Evidence suggests that mechanical cues are critical in the progression of congestive heart failure. In order to mediate two important mechanical parameters, cardiac size and cardiac output, we have developed a direct cardiac contact device capable of two actions: (1) adjustable cardiac support to modulate cardiac size and (2) synchronous active assist to modulate cardiac output. In addition, the device was designed to (1) remain in place about the heart without tethering, (2) allow free normal motion of the heart, and (3) provide assist via direct cardiac compression without abnormally inverting the curvature of the heart. The actions and features described above were mapped to particular design solutions and assessed in an acute implantation in an ovine model of acute heart failure (esmolol overdose). A balloon catheter was inflated in the vena cava to reduce preload and determine the end-diastolic pressure-volume relationship with and without passive support. A Millar PV Loop catheter was inserted in the left ventricle to acquire pressure-volume data throughout the experiments. Fluoroscopic imaging was used to investigate effects on cardiac motion. Implementation of the adjustable passive support function of the device successfully modulated the end-diastolic pressure-volume relationship toward normal. The active assist function successfully restored cardiac output and stroke work to healthy baseline levels in the esmolol induced failure model. The device remained in place throughout the experiment and when de-activated, did not inhibit cardiac motion. In this in vivo proof of concept study, we have demonstrated that a single device can be used to provide both passive constraint/support and active assist. Such a device may allow for controlled, disease specific, flexible intervention. Ultimately, it is hypothesized that the combination of support and assist could be used to facilitate cardiac rehabilitation therapy. The principles guiding this approach involve simply creating the conditions under which natural growth and remodeling processes are guided in a therapeutic manner. For example, the passive support function could be incrementally adjusted to gradually reduce the size of the dilated myocardium, while the active assist function can be implemented as necessary to maintain cardiac output and decompress the heart.

References

References
1.
American Heart Association
, 2008, “
Heart Disease and Stroke Statistics—2008 Update: A Report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
117
, pp.
e25
e146
.
2.
Nohria
,
A.
,
Lewis
,
E.
, and
Stevenson
,
L. W.
, 2002, “
Medical Management of Advanced Heart Failure
,”
JAMA, J. Am. Med. Assoc.
,
287
(
5
), pp.
628
640
.
3.
Ertl
,
G.
, and
Kochsiek
,
K.
, 1993, “
Development, Early Treatment, and Prevention of Heart Failure
,”
Circulation
,
87
, pp.
IV1
IV2
.
4.
Mann
,
D. L.
, and
Bristow
,
M. R.
, 2005, “
Mechanisms and Models in Heart Failure: The Biomechanical Model and Beyond
,”
Circulation
,
111
(
21
), pp.
2837
2849
.
5.
Rose
,
E. A.
, and
Frazier
,
O. H.
, 1997, “
Resurrection After Mechanical Circulatory Support
,”
Circulation
,
96
(
2
), pp.
393
395
.
6.
Ghanta
,
R. K.
,
Lee
,
L. S.
,
Umakanthan
,
R.
,
Laurence
,
R. G.
,
Fox
,
J. A.
,
Bolman
,
R. M.
, III
,
Cohn
,
L. H.
, and
Chen
,
F. Y.
, 2008, “
Real-Time Adjustment of Ventricular Restraint Therapy in Heart Failure
,”
Eur. J. Cardiothorac. Surg.
34
, pp.
1136
1140
.
7.
Williams
,
M. R.
, and
Artrip
,
J. H.
, 2001, “
Direct Cardiac Compression for Cardiogenic Shock With the CardioSupport System
,”
Ann. Thorac. Surg.
,
71
, pp.
S188
S189
.
8.
Patwari
,
P.
, and
Lee
,
R. T.
, 2008, “
Mechanical Control of Tissue Morphogenesis
,”
Circ. Res.
,
103
, pp.
234
243
.
9.
Parker
,
K. K.
,
Tan
,
J.
,
Chen
,
C. S.
, and
Tung
,
L.
, 2008, “
Myofibrillar Architecture in Engineered Cardiac Myocytes
,”
Circ. Res.
103
, pp.
340
342
.
10.
Bray
,
M. A.
,
Sheehy
,
S. P.
, and
Parker
,
K. K.
, 2008, “
Sarcomere Alignment is Regulated by Myocyte Shape
,”
Cell Motil. Cytoskeleton
,
65
, pp.
641
651
.
11.
Parker
,
K. K.
,
Brock
,
A. L.
,
Brangwynne
,
C.
,
Mannix
,
R. J.
,
Wang
,
N.
,
Ostuni
,
E.
,
Geisse
,
N. A.
,
Adams
,
J. C.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
, 2002, “
Directional Control of Lamellipodia Extension by Constraining Cell Shape and Orienting Cell Tractional Forces
,”
FASEB J.
,
16
, pp.
1195
1204
.
12.
Estes
,
B. T.
,
Gimble
,
J. M.
, and
Guilak
,
F.
, 2004, “
Mechanical Signals as Regulators of Stem Cell Fate
,”
Curr. Top. Dev. Biol.
,
60
, pp.
91
126
.
13.
Pfeffer
,
M. A.
,
Lamas
,
G. A.
,
Vaughan
,
D. E.
,
Parisi
,
A. F.
, and
Braunwald
,
E.
, 1988, “
Effect of Captopril on Progressive Ventricular Dilatation After Anterior Myocardial Infarction
,”
N. Engl. J. Med.
319
, pp.
80
86
.
14.
Braun
,
T.
, and
Martire
,
A.
, 2007, “
Cardiac Stem Cells: Paradigm Shift or Broken Promise? A View From Developmental Biology
,”
Trends Biotechnol.
,
25
(
10
), pp.
441
447
.
15.
Guan
,
K.
, and
Hasenfus
,
G.
, 2007, “
Do Stem Cells in the Heart Truly Differentiate Into Cardiomyocytes?
,”
J. Mol. Cell. Cardiol.
,
43
, pp.
377
387
.
16.
Rubart
,
M.
, and
Field
,
L. J.
, 2006, “
Cardiac Regeneration: Repopulating the Heart
,”
Annu. Rev. Physiol.
,
68
, pp.
29
49
.
17.
Zimmet
,
H.
, and
Krum
,
H.
, 2008, “
Using Adult Stem Cells to Treat Heart Failure–Fact or Fiction?
,”
Heart Lung Circ.
,
17
(
4
), pp.
S48
S54
.
18.
Anstadt
,
M. P.
,
Schulte-Eistrup
,
S. A.
,
Motomura
,
T.
,
Soltero
,
E. R.
,
Takano
,
T.
,
Mikati
,
I. A.
,
Nonaka
,
K.
,
Joglar
,
F.
, and
Nose
,
Y.
, 2002,
Non-Blood Contacting Biventricular Support for Severe Heart Failure
,
Ann. Thorac. Surg.
,
73
, pp.
556
562
.
19.
Anstadt
,
G. L.
,
Schiff
,
P.
, and
Baue
,
A. E.
, 1966, “
Prolonged Circulatory Support by Direct Mechanical Ventricular Assistance
,”
Trans. Am. Soc. Artif. Intern. Organs
,
12
, pp.
72
79
.
20.
Anstadt
,
G. L.
, and
Britz
,
W. E.
, Jr.
, 1968, “
Continued Studies in Prolonged Circulatory Support by Direct Mechanical Ventricular Assistance
,”
Trans. Am. Soc. Artif. Intern. Organs
,
14
, pp.
297
303
.
21.
Anstadt
,
M. P.
,
Anstadt
,
G. L.
, and
Lowe
,
J. E.
, 1991, “
Direct Mechanical Ventricular Actuation: A Review
,”
Resuscitation
,
21
(
1
), pp.
7
23
.
22.
Anstadt
,
M. P.
,
Budharaju
,
S.
,
Darner
,
R. J.
,
Schmitt
,
B. A.
,
Prochaska
,
L. J.
,
Pothoulakis
,
A. J.
,
Portner
P. M.
, 2009, “
Ventricular Actuation Improves Systolic and Diastolic Myocardial Function in the Small Failing Heart
,”
Ann. Thorac. Surg.
,
88
(
6
), pp.
1982
1988
.
23.
Parravicini
,
R.
, 1985, U.S. Patent No. 4,536,893.
24.
Karvarana
,
M. N.
,
Helman
,
D. N.
,
Williams
,
M. R.
,
Barbone
,
A.
,
Sanchez
,
J. A.
,
Rose
,
E. A.
,
Oz
,
M. C.
,
Milbocker
,
M.
, and
Kung
,
R. T. V.
, 2001, “
Circulatory Support With a Direct Cardiac Compression Device: A Less Invasive Approach With the AbioBooster Device
,”
J. Thorac. Cardiovasc. Surg.
,
122
, pp.
786
787
.
25.
Kung
R. T. V.
, and
Rosenberg
,
M.
, 1999, “
Heart Booster: A Pericardial Support Device
,”
Ann. Thorac. Surg.
,
68
, pp.
764
767
.
26.
Artrip
,
J. H.
,
Yi
,
G. H.
,
Levin
,
H. R.
,
Burkhoff
,
D.
, and
Wang
,
J.
, 1999, “
Physiological and Hemodynamic Evaluation of Non-Uniform Direct Cardiac Compression
,”
Circulation
100
(
Suppl. II
), pp.
236
243
.
27.
Oz
,
M. C.
,
Artrip
,
J. H.
, and
Burkhoff
,
D.
, 2002, “
Direct Cardiac Compression Devices
,”
J. Heart Lung Transplant
,
21
, pp.
1049
1055
.
You do not currently have access to this content.