As minimally invasive operations are performed through small portals, the limited manipulation capability of straight surgical instruments is an issue. Access to the pathology site can be challenging, especially in confined anatomic areas with few available portals, such as the knee joint. The goal in this paper is to present and evaluate a new sideways-steerable instrument joint that fits within a small diameter and enables transmission of relative high forces (e.g., for cutting of tough tissue). Meniscectomy was selected as a target procedure for which quantitative design criteria were formulated. The steering mechanism consists of a crossed configuration of a compliant rolling-contact element that forms the instrument joint, which is rotated by flexural steering beams that are configured in a parallelogram mechanism. The actuation of cutting is performed by steel wire that runs through the center of rotation of the instrument joint. A prototype of the concept was fabricated and evaluated technically. The prototype demonstrated a range of motion between −22° and 25° with a steering stiffness of 17.6 Nmm/rad (min 16.9 – max 18.2 Nmm/rad). Mechanical tests confirmed that the prototype can transmit an axial load of 200 N on the tip with a maximum parasitic deflection of 4.4°. A new sideways steerable mechanical instrument joint was designed to improve sideways range of motion while enabling the cutting of strong tissues in a minimally invasive procedure. Proof of principle was achieved for the main criteria, which encourages the future development of a complete instrument.

References

References
1.
Lim
,
J.
, and
Erdman
,
A.
, 2003, “
A Review of Mechanism Used in Laparoscopic Surgical Instruments
,”
Mech. Mach. Theory
,
38
, pp.
1133
1147
.
2.
Tuijthof
,
G. J. M.
, 2003, “
Technical Improvement of Arthroscopic Techniques
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
3.
Arnoczky
,
S. P.
, 1990, “
Structure and Biology of the Knee Meniscus
,” in
Biomechanics of Diarthrodial Joints
,
V. C.
Mow
,
A.
Ratcliffe
, and
S. L.-Y.
Woo
, eds.,
Springer-Verlag
,
New York
, Chap. 6, pp.
177
190
.
4.
Frecker
,
M. I.
, and
Snyder
,
A. J.
, 2005, “
Surgical Robotics: Multifunctional End Effectors for Robotic Surgery
,”
Oper. Tech. General Surgery
,
7
(
4
), pp.
165
169
.
5.
Hasuo
,
T.
,
Ogura
,
G.
,
Sakuma
,
I.
,
Kobayashi
,
E.
,
Iseki
,
H.
, and
Nakamura
,
R.
, 2006, “
Development of Bending and Grasping Manipulator for Multi Degrees of Freedom Ultrasonically Activated Scalpel
,”
Int. J. Comput. Assisted Radiol. Surgery
,
1
(
suppl. 7
), pp.
222
223
.
6.
Yamashita
,
H.
,
Kim
,
D.
,
Hata
,
N.
, and
Dohi
,
T.
, 2003, “
Multi-Slider Linkage Mechanism for Endoscopic Forceps Manipulator
,” in
Conference on Intelligent Robots and Systems
, pp.
2577
2582
.
7.
van Meer
,
F.
,
Philippi
,
J.
,
Esteve
,
D.
, and
Dombre
,
E.
, 2007, “
Compact Generic Multi Channel Plastic Joint for Surgical Instrumentation
,”
Mechatronics
,
17
, pp.
562
56
.
8.
Balazs
,
M.
,
Feussner
,
H.
,
Hirzinger
,
G.
,
Omote
,
K.
, and
Ungeheuer
,
A.
, 1998, “
A New Tool for Minor-Access Surgery
,”
IEEE Eng. Med. Biol.
,
May/June
, pp.
45
48
.
9.
Kelly
,
M. A.
,
Fithian
,
D. C.
,
Chern
,
K. Y.
, and
Mow
V. C.
, 1990, “
Structure and Function of the Meniscus: Basic and Clinical Implications
,” in
Biomechanics of Diarthrodial Joints
,
V. C.
Mow
,
A.
Ratcliffe
, and
S. L.-Y.
Woo
, eds.,
Springer-Verlag
,
New York
.
10.
Baker
,
B.
, and
Lubowitz
,
J.
, “
Meniscus Injuries
,” eMedicine, updated 22 November 2006, accessed 24 August 2007, available from http://www.emedicine.com/sports/topic160.htmhttp://www.emedicine.com/sports/topic160.htm
11.
Howell
,
J. R.
, and
Handoll
,
H. H.
, 2000, “
Surgical Treatment for Meniscal Injuries of the Knee in Adults
,”
Cochrane. Database. Syst. Rev.
,
2
, pp.
CD001353
.
12.
Tuijthof
,
G.
,
Meulman
,
H.
,
Herder
,
J.
, and
Dijk
,
C. v.
, 2009, “
Meniscal Shear Stress for Punching
,”
J. Appl. Biomater. Biomech.
,
7
(
2
), pp.
97
103
.
13.
Sclater
,
N.
, and
Chironis
,
N.
, 2007,
Mechanisms and Mechanical Devices
,
McGraw-Hill
,
New York
.
14.
Ikuta
,
K.
,
Ichikawa
,
H.
,
Suzuki
,
K.
, and
Yamamoto
,
T.
, 2003, “
Safety Active Catheter With Multi-Segments Driven by Innovative Hydro-Pressure Micro Actuators
,” in
16th Annual International Conference on IEEE Micro Electro Mechanical Systems (MEMS)
, pp.
130
135
.
15.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
16.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
J. Biomech. Eng
,
127
(
6
), pp.
990
993
.
17.
Herder
,
J.
, and
van den Berg
,
F.
, 2000, “
Statically Balanced Compliant Mechanisms (SBCM’S), and Example and Prospects
,”
ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Baltimore
, Paper No. DETC2000/MECH-14144.
18.
de Lange
,
D.
,
Langelaar
,
M.
, and
Herder
,
J.
, 2008, “
Towards the Design of a Statically Balanced Compliant Laparoscopic Grasper Using Topology Optimization
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2008-49794, pp.
293
305
.
19.
Kota
,
S.
,
Lu
,
K. J.
,
Kreiner
,
K.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
J. Biomech. Eng
,
127
(
6
), pp.
981
989
.
20.
Trease
,
B.
,
Moon
,
Y.-M.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
J. Mech. Des.
,
127
, pp.
788
798
.
21.
Jeanneau
,
A.
,
Herder
,
J.
,
Laliberte
,
T.
, and
Gosselin
,
C.
, 2004, “
A Compliant Rolling Contact Joint and its Application in a 3-DOF Planar Parallel Mechanism With Kinematic Analysis
,” in
Proceedings of the ASME Design Engineering Technical Conference
,
Salt Lake City
, pp.
689
698
.
22.
Halverson
,
P.
,
Howell
,
L.
, and
Magleby
,
S.
, 2010, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.
23.
Soykasap
,
O.
, 2007, “
Analysis of Tape Spring Hinges
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
853
860
.
24.
Yamashita
,
H.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Liao
,
H.
,
Chiba
,
T.
, and
Dohi
,
T.
, 2006, “
Two-DOFs Bending Forceps Manipulator of 3.5-mm Diameter for Intrauterine Fetus Surgery: Feasibility Evaluation
,”
Int. J. Comput. Assisted Radiol. Surgery
,
1
(
suppl 1
), pp.
218
220
.
25.
Breedveld
,
P.
,
Scheltes
,
J.
,
Blom
,
E.
, and
Verheij
,
J.
, 2005, “
A New, Easily Miniaturized Steerable Endoscope
,” IEEE Eng. Med. Biol. Mag., pp.
40
47
.
26.
van Beek
,
A.
, 2006,
Advanced Engineering Design: Lifetime Performance and Reliability
,
Technische Universiteit Delft
,
Delft
.
27.
Cannon
,
J.
,
Lusk
,
C.
, and
Howell
,
L.
, 2005, “
Compliant Rolling-Contact Element Mechanisms
,”
Proceedings of ASME 29th Mechanisms and Robotics Conference
, Paper No. DETC2005-84073, pp.
3
13
.
28.
Lotti
,
F.
,
Zucchelli
,
B.
,
Reggiani
,
B.
, and
Vassura
,
G.
, 2006, “
Evaluating the Flexural Stiffness of Compliant Hinges Made With Close-Wound Helical Springs
,”
ASME 30th Annual Mechanisms and Robotics Conference
.
29.
Tuijthof
,
G. J. M.
,
van Engelen
,
S. J. M. P.
,
Herder
,
J. L.
,
Goossens
,
R. H. M.
,
Snijders
,
C. J.
, and
van Dijk
,
C. N.
, 2003, “
Ergonomic Handle for an Arthroscopic Cutter
,”
Min. Inv. Therapy All. Technol.
,
12
(
1–2
), pp.
82
90
.
You do not currently have access to this content.