Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 μm in diameter. This paper focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69 to 621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (∼150 μm bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille’s Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1–2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was > 30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery.

References

References
1.
Kaushik
,
S.
,
Hord
,
A. H.
,
Denson
,
D. D.
,
Mcallister
,
D. V.
,
Smitra
,
S.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2001, “
Lack of Pain Associated with Microfabricated Microneedles
,”
Anesth. Analg. (Baltimore)
,
92
(
2
), pp.
502
504
.
2.
Gill
,
H. S.
,
Denson
,
D. D.
,
Burris
,
B. A.
, and
Prausnitz
,
M. R.
, 2008, “
Effect of Microneedle Design on Pain in Human Volunteers
,”
Clin. J. Pain
,
24
(
7
), pp.
585
594
.
3.
Gill
,
H. S.
, and
Prausnitz
,
M. R.
, 2007, “
Does Needle Size Matter?
,”
J. Diabetes Sci. Technol.
,
1
(
5
), pp.
725
729
.
4.
Cormier
,
M.
,
Johnson
,
B.
,
Ameri
,
M.
,
Nyam
,
K.
,
Libiran
,
L.
,
Zhang
,
D. D.
, and
Daddona
,
P.
, 2004, “
Transdermal Delivery of Desmopressin Using a Coated Microneedle Array Patch System
,”
J. Controlled Release
,
97
(
3
), pp.
503
511
.
5.
Liu
,
R.
,
Wang
,
X.
, and
Zhou
,
Z.
, 2004, “
Application of MEMS Microneedles Array in Biomedicine
,”
J Biomed Eng.
,
21
(
3
), pp.
482
485
.
6.
Mukerjee
,
E. V.
,
Isseroff
,
R. R.
,
Nuccitelli
,
R.
,
Collins
,
S. D.
, and
Smith
,
R. L.
, 2006, “
Microneedle Array for Measuring Wound Generated Electric Fields
,”
Conf. Proc. IEEE Eng. Med.
,
1
, pp.
4326
4328
.
7.
Yan
,
K.
,
Todo
,
H.
, and
Sugibayashi
,
K.
, 2010, “
Transdermal Drug Delivery by In-Skin Electroporation Using a Microneedle Array
,”
Int. J. Pharm.
,
397
(
1–2
), pp.
77
83
.
8.
Jiang
,
J.
,
Moore
,
J. S.
,
Edelhauser
,
H. F.
, and
Prausnitz
,
M. R.
, 2009, “
Intrascleral Drug Delivery to the Eye Using Hollow Microneedles
,”
Pharm. Res.
,
26
(
2
), pp.
395
403
.
9.
Prausnitz
,
M. R.
,
Mikszta
,
J. A.
,
Cormier
,
M.
, and
Andrianov
,
A. K.
, 2009, “
Microneedle-Based Vaccines
,”
Curr. Top. Microbiol. Immunol.
,
333
, pp.
369
393
.
10.
Park
,
J. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2006, “
Polymer Microneedles for Controlled-Release Drug Delivery
,”
Pharm. Res.
,
23
(
5
), pp.
1008
1019
.
11.
Park
,
J. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2005, “
Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery
,”
J. Controlled Release
,
104
(
1
), pp.
51
66
.
12.
Lee
,
J. W.
,
Park
,
J. H.
, and
Prausnitz
,
M. R.
, 2008, “
Dissolving Microneedles for Transdermal Drug Delivery
,”
Biomaterials
,
29
(
13
), pp.
2113
2124
.
13.
Davis
,
S. P.
,
Martanto
,
W.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
, 2005, “
Hollow Metal Microneedles for Insulin Delivery to Diabetic Rats
,”
IEEE Trans. Biomed. Eng.
,
52
(
5
), pp.
909
915
.
14.
Martanto
,
W.
,
Davis
,
S. P.
,
Holiday
,
N. R.
,
Wang
,
J.
,
Gill
,
H. S.
, and
Prausnitz
,
M. R.
, 2004, “
Transdermal Delivery of Insulin Using Microneedles in Vivo
,”
Pharm. Res.
,
21
(
6
), pp.
947
952
.
15.
Roxhed
,
N.
,
Samel
,
B.
,
Nordquist
,
L.
,
Griss
,
P.
, and
Stemme
,
G.
, 2008, “
Painless Drug Delivery through Microneedle-Based Transdermal Patches Featuring Active Infusion
,”
IEEE Trans. Biomed. Eng.
,
55
(
3
), pp.
1063
1071
.
16.
Kosoglu
,
M.
,
Hood
,
R.
,
Chen
,
Y.
,
Xu
,
Y.
,
Rylander
,
M. N.
, and
Rylander
,
C. G.
, 2010, “
Fiberoptic Microneedles for Transdermal Light Delivery: Ex Vivo Porcine Skin Penetration Experiments
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091014
.
17.
Ramasubramanian
,
M. K.
,
Barham
,
O. M.
, and
Swaminathan
,
V.
, 2008, “
Mechanics of a Mosquito Bite with Applications to Microneedle Design
,”
Bioinspiration and Biomimetics
,
3
(
4
), pp.
046001
.
18.
Kirby
,
B.
, 2010,
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University Press
,
New York
.
19.
Munson
,
B. R.
, and
Okiishi
,
T. H.
, 2009,
Fundamentals of Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
20.
Incropera
,
F. P.
, 2007,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
21.
Zahn
,
J. D.
,
Talbot
,
N. H.
,
Liepmann
,
D.
, and
Pisano
,
A. P.
, 2000,
Biomed. Microdevices
,
2
(
4
), pp.
295
303
.
22.
Sutterby
,
J.
, 1964,
Laminar Newtonian and Non-Newtonian Converging Flow in Conical Sections
, PhD Dissertation, University of Wisconsin.
23.
Jarzebski
,
A. B.
, and
Wilkinson
,
W. L.
, 1981, “
Non-Isothermal Developing Flow of a Generalized Power-Law Fluid in a Tapered Tube
,”
J. Non-Newtonian Fluid Mech.
,
8
(
3–4
), pp.
239
248
.
You do not currently have access to this content.