This paper presents the design and simulation of a cyclic robot for lower-limb exercise robots. The robot is designed specifically for cyclic motions and the high power nature of lower-limb interaction—as such, it breaks from traditional robotics wisdom by intentionally traveling through singularities and incorporating large inertia. Such attributes lead to explicit design considerations. Results from a simulation show that the specific design requires only a reasonably sized damper and motor.

References

1.
DeJong
,
B. P.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
, 2009, “
Design of a Cyclic Robot for the Lower Limb
,”
ASME 2009 International Mechanical Engineering Congress and Exposition
,
ASME
,
Orlando, FL
, pp.
83
91
.
2.
Duncan
,
P.
,
Richards
,
L.
,
Wallace
,
D.
,
Stoker-Yates
,
J.
,
Phol
,
P.
,
Luchies
,
C.
,
Ogle
,
A.
, and
Studenski
,
S.
, 1998, “
A Randomized, Controlled Pilot Study of a Home-Based Exercise Program for Individuals With Mild and Moderate Stroke
,”
Stroke
,
29
, pp.
2055
2060
.
3.
Brown
,
D. A.
, and
Kautz
,
S. A.
, 1998, “
Increased Workload Enhances Force Output During Pedaling Exercise in Persons With Poststroke Hemiplegia
,”
Stroke
,
29
, pp.
598
606
.
4.
Zeni
,
A. I.
,
Hoffman
,
M. D.
, and
Clifford
,
P. S.
, 1996, “
Energy Expenditure With Indoor Exercise Machines
,”
J. Am. Med. Assoc.
,
275
(
18
), pp.
1424
1427
.
5.
Glass
,
S. C.
, and
Chvala
,
A. M.
, 2001, “
Preferred Exertion Across Three Common Modes of Exercise Training
,”
J. Strength Cond. Res.
,
15
(
4
), pp.
474
479
.
6.
DeJong
,
B. P.
, 2007, “
On Cyclic Robots for the Lower Limb
,” Ph.D. thesis, Northwestern University, Evanston, IL.
7.
Shields
,
J.
, and
Horowitz
,
R.
, 1998, “
Adaptive Step Rate Control of a Stair Stepper Exercise Machine
,”
Am. Control Conf.
,
2
, pp.
1058
1062
.
8.
Ferber
,
A. R.
, 2007, “
Affecting Exercise Intensity Through Haptic Communications
,” M.Sc. thesis, Northwestern University, Evanston, IL.
9.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
, 2003, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation
,
6
(12), pp.
108
115
.
10.
Veneman
,
J.
,
Kruidhof
,
R.
,
Hekman
,
E.
,
Ekkelenkamp
,
R.
,
Asseldonk
,
E. V.
, and
van der Kooij
,
H.
, 2007, “
Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(3), pp.
379
386
.
11.
Hesse
,
S.
, and
Uhlenbrock
,
D.
, 2000, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.
12.
Schmidt
,
H.
,
Werner
,
C.
,
Bernhardt
,
R.
,
Hesse
,
S.
, and
Kruger
,
J.
, 2007, “
Gait Rehabilitation Machines Based on Programmable Footplates
,”
J. Neuroeng. Rehabil.
,
4
(
2
), pp.
1
7
.
13.
Christensen
,
R. R.
,
Hollerbach
,
J. M.
,
Xu
,
Y.
, and
Meek
,
S. G.
, 2000, “
Inertial-Force Feedback for the Treadport Locomotion Interface
,”
Presence
,
9
(
1
), pp.
1
14
.
14.
Boian
,
R. F.
,
Bouzit
,
M.
,
Burdea
,
G. C.
,
Leswis
,
J.
, and
Deutsch
,
J. E.
, 2005, “
Dual Stewart Platform Mobility Simulator
,”
9th International Conference on Rehabilitation Robotics
,
IEEE
,
Chicago, IL
, pp.
550
555
.
15.
Hollerbach
,
J.
,
Grow
,
D.
, and
Parker
,
C.
, 2005, “
Developments in Locomotion Interfaces
,”
9th International Conference on Rehabilitation Robotics
,
IEEE
,
Chicago, IL
, pp.
522
525
.
16.
Kazerooni
,
H.
, and
Her
,
M. G.
, 1993. “
A Virtual Exercise Machine
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
Atlanta, GA
, pp.
232
238
.
17.
Public Health Service–U.S. Department of Health and Human Services, 1999, Promoting Physical Activity: A Guide for Community Action, Human Kinetics. Champaign, IL.
18.
Johnson
,
A. N.
,
Cooper
,
D. F.
, and
Edwards
,
R. H. T.
, 1977, “
Exertion of Stairclimbing in Normal Subjects and in Patients With Chronic Obstructive Bronchitis
,”
Thorax
,
32
, pp.
711
716
.
19.
Pearson
,
S. J.
,
Cobbold
,
M.
, and
Harridge
,
S. D. R.
, 2004, “
Power Output of the Lower Limb During Variable Inertial Loading: A Comparison Between Methods Using Single and Repeated Contractions
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
92
, pp.
176
181
.
20.
Ulmer
,
H.-V.
,
Janz
,
U.
, and
Lollgen
,
H.
, 1977, “
Aspects of the Validity of Borg’s Scale. Is It Measuring Stress or Strain?
,”
Physical Work and Effort
,
G.
Borg
, ed.,
Pergamon Press
,
New York
, pp.
181
196
.
21.
Fauling
,
E. L.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
, 2004. “
A High Performance 6-DOF Haptic Cobot
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
New Orleans, LA
, pp.
1980
1985
.
22.
PheoniX Technologies Incorporated, 2007, www.ptiphoenix.com.
23.
Ivanenko
,
Y. P.
,
Grasso
,
R.
,
Macellari
,
V.
, and
Lacquaniti
,
F.
, 2002, “
Control of Foot Trajectory in Human Locomotion: Role of Ground Contact Forces in Simulated Reduced Gravity
,”
J. Neurophysiol.
,
87
, pp.
3070
3089
.
You do not currently have access to this content.