This paper presents the authors’ investigation results of applying the pneumatic artificial muscle actuation to above-knee prostheses. As a well-known muscle actuator, the pneumatic artificial muscle actuator features a number of unique advantages, including high power density, and similar elastic characteristics to biological muscles. Despite multiple applications in related areas, the application of pneumatic artificial muscle in above-knee prostheses has not been explored. Inspired by this fact, the research presented in this paper aims to develop a pneumatic artificial muscle-actuated above-knee prosthesis, with three specific objectives: (1) demonstrate the pneumatic artificial muscle actuation’s capability in generating sufficient torque output to meet the locomotive requirements; (2) develop an effective control approach to enable the restoration of locomotive functions; (3) conduct preliminary testing of the prosthesis prototype on a healthy subject through a specially designed able-body adaptor. In the prosthesis design, an agonist–antagonist layout is utilized to obtain a bidirectional motion. To minimize the radial profile, an open-frame structure is used, with the purpose of allowing the expansion of the muscle actuators into the center space without interference. Also, the muscle actuator parameters are calculated to provide sufficient torque capacity (up to 140 N m) to meet the requirements of level walking. According to this design, the fabricated prototype weighs approximately 3 kg, with a range of motion of approximately 100°. For the control of the prosthesis, a model-based torque control algorithm is developed based on the sliding mode control approach, which provides robust torque control for this highly nonlinear system. Combining this torque control algorithm with an impedance-based torque command generator (higher-level control algorithm), the fabricated prosthesis prototype has demonstrated a capability of providing a natural gait during treadmill walking experiments.

References

References
1.
Winter
,
D. A.
, 1991,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
2nd ed.
,
University of Waterloo Press
,
Waterloo, ON, Canada
.
2.
Jacobs
,
R.
,
Bobbert
,
M. F.
, and
van Ingen Schenau
,
G. J.
, 1996, “
Mechanical Output from Individual Muscles during Explosive Leg Extensions: The Role of Biarticular Muscles
,”
J. Biomech.
,
29
, pp.
513
523
.
3.
Nagano
,
A.
,
Ishige
,
Y.
, and
Fukashiro
,
S.
, 1998, “
Comparison of New Approaches to Estimate Mechanical Output of Individual Joints in Vertical Jumps
,”
J. Biomech
.
32
, pp.
951
955
.
4.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
, 2002, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
, pp.
32
44
.
5.
Nadeau
,
S.
,
McFadyen
,
B. J.
, and
Malouin
,
F.
, 2003, “
Frontal and Sagittal Plane Analyses of the Sair Climbing Task in Healthy Adults Aged Over 40 Years: What Are the Challenges Compared to Level Walking?
Clin. Biomech
,
18
, pp.
950
959
.
6.
Waters
,
R.
,
Perry
,
J.
,
Antonelli
,
D.
, and
Hislop
,
H.
, 1976, “
Energy Cost of Walking Amputees: the Influence of Level of Amputation
,”
J. Bone Joint Surg.
,
58A
, pp.
42
46
.
7.
Flowers
,
W. C.
, and
Mann
,
R. W.
, 1977, “
Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator
,”
ASME J. Biomech. Eng.
,
99
, pp.
3
8
.
8.
Popovic
,
D.
, and
Schwirtlich
,
L.
, 1988, “
Belgrade Active A/K Prosthesis
,”
Electrophysiological Kinesiology
, Interim Congress Ser. No. 804,
J.
de Vries
, ed.,
Excerpta Medica
,
Amsterdam, The Netherlands
, pp.
337
343
.
9.
Hata
,
N.
, and
Hori
,
Y.
, 2002, “
Basic Research on Power Limb Using Gait Information of Able-Side Leg
,”
7th International Workshop on Advanced Motion Control
, pp.
540
545
.
10.
Hata
,
N.
, and
Hori
,
Y.
, 2002, “
Basic Research on Power Limb Using Variable Stiffness Mechanism
,”
Proceedings of the Power Conversion Conference
, Vol.
2
, pp.
917
920
.
11.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
, 2009, “
Agonist–Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehab. Res. Dev.
,
46
, pp.
361
374
.
12.
Fite
,
K.
,
Mitchell
,
J.
,
Sup
,
F.
, and
Goldfarb
,
M.
, 2007, “
Design and Control of an Electrically Powered Knee Prosthesis
,”
Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics
, pp.
902
905
.
13.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
, 2007, “
Design and Control of a Powered Knee and Ankle Prosthesis
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4134
4139
.
14.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
, 2008, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Robot. Res.
,
27
, pp.
263
273
.
15.
Lambrecht
,
B. G. A.
, and
Kazerooni
,
H.
, 2009, “
Design of a Semi-Active Knee Prosthesis
,”
Proceedings of 2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
, pp.
639
645
.
16.
Caldwell
,
D. G.
,
Razak
,
A.
, and
Goodwin
,
M. J.
, 1993, “
Braided Pneumatic Muscle Actuators
,”
IFAC Conference on Intelligent Autonomous Vehicles
, pp.
507
512
.
17.
Hannaford
,
B.
, and
Winters
,
J. M.
, 1990, “
Actuator Properties and Movement Control: Biological and Technological Models
,” in
Multiple Muscle Systems: Biomechanics and Movement Organization
, Chap. 7,
Springer
,
New York
, pp.
101
120
.
18.
Isermann
,
R.
, and
Raab
,
U.
, 1993, “
Intelligent Actuators—Ways to Autonomous Systems
,”
Automatica
,
29
, pp.
1315
1331
.
19.
Raab
,
U.
, and
Isermann
,
R.
, 1990, “
Actuator Principles with Low Power
,” In
vdi/vde Tagung Actuator
, Bremen, Vol. 90.
20.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 2002, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Robot. Res.
,
21
, pp.
295
309
.
21.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
, Van
Damme
,
M.
,
Berl
,
P.
, Van der
Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
, 2008, “
A Pneumatically Powered Below-Knee Prosthesis: Design Specifications and First Experiments with an Amputee
,” in
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Arizona
, pp.
19
22
.
22.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 2005, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
, pp.
189
197
.
23.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
, 2009, “
A Pneumatic Powered Knee-Ankle-Foot Orthosis (KAFO) with Myoelectric Activitation and Inhibition
,”
J. NeuroEng. Rehab.
,
6
, p.
23
.
24.
Beyl
,
P.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
, 2009, “
Design and Control of a Lower Limb Exoskeleton for Robot Assisted Gait Training
,”
Appl. Bion. Biomech.
,
6
, pp.
229
243
.
25.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Bowler
,
C. J.
, 1997, “
Investigation of Bipedal Robot Locomotion Using Pneumatic Muscle Actuators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Albuquerque, NM
, pp.
799
804
.
26.
Hosoda
,
K.
,
Takuma
,
T.
, and
Nakamoto
,
A.
, 2006, “
Design and Control of 2D Biped that Can Walk and Run with Pneumatic Artificial Muscles
,”
IEEE-RAS International Conference on Humanoid Robots
, pp.
284
289
.
27.
Philen
,
M.
, 2009, “
On the Applicability of Fluidic Flexible Matrix Composite Variable Impedance Materials for Prosthetic and Orthotic Devices
,”
Smart Mater. Struct.
,
18
, pp.
1
10
.
28.
Enderle
,
J.
,
Blanchard
,
S.
, and
Bronzino
,
J.
, 2005,
Introduction to Biomedical Engineering
,
Elsevier Academic
,
Burlington, MA
.
29.
Chou
,
C.-P.
, and
Hannaford
,
B.
, 1996, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Robot. Automat.
,
12
, pp.
90
102
.
30.
Slotine
,
J. J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
31.
FESTO AG, 2007, Fluidic Muscle DMSP/MAS, Operation instructions, FESTO, Esslingen, Germany.
32.
Grimes
,
D. L.
,
Flowers
,
W. C.
, and
Donath
,
M.
, 1977, “
Feasibility of an Active Control Scheme for Above Knee Prostheses
,”
ASME J. Biomech. Eng.
,
99
, pp.
215
221
.
33.
Shen
,
X.
, and
Christ
,
D.
, 2011, “
Design and Control of Chemo-Muscle: A Liquid-Propellant-Powered Muscle Actuation System
,”
ASME J. Dyn. Syst., Meas. Contr.
,
133
, p.
021006
.
You do not currently have access to this content.