In cochlear-implant (CI) insertion experiments, scala-tympani (ST) phantoms are often used in place of in vivo studies or cadaver studies. During the development of novel CI technology, a scaled-up phantom is often desirable. In this paper, we create a scalable model of the human ST by synthesizing published anatomical data and images. We utilize the model to fabricate an accurate, inexpensive, and reproducible ST phantom at a 3:1 scale.

1.
Rebscher
,
S. J.
,
Talbot
,
N.
,
Bruszewski
,
W.
,
Heilmann
,
M.
,
Brasell
,
J.
, and
Merzenich
,
M. M.
, 1996, “
A Transparent Model of the Human Scala Tympani Cavity
,”
J. Neurosci. Methods
0165-0270,
64
, pp.
105
114
.
2.
Rebscher
,
S. J.
,
Heilmann
,
M.
,
Bruszewski
,
W.
,
Talbot
,
N. H.
,
Snyder
,
R. L.
, and
Merzenich
,
M. M.
, 1999, “
Strategies to Improve Electrode Positioning and Safety in Cochlear Implants
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
3
), pp.
340
352
.
3.
Rebscher
,
S. J.
,
Hetherington
,
A.
,
Bonham
,
B.
,
Wardrop
,
P.
,
Whinney
,
D.
, and
Leake
,
P. A.
, 2008, “
Considerations for Design of Future Cochlear Implant Electrode Arrays: Electrode Array Stiffness, Size, and Depth of Insertion
,”
J. Rehabil. Res. Dev.
0748-7711,
45
, pp.
731
748
.
4.
Zhang
,
J.
,
Roland
,
J. T.
, Jr.
,
Simaan
,
N.
, and
Manolidis
,
S.
, 2006, “
A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays
,”
MICCAI 2006
, Paper No. LNCS 4190, pp.
33
40
.
5.
Zhang
,
J.
,
Roland
,
J. T.
, Jr.
,
Manolidis
,
S.
, and
Simaan
,
N.
, 2009, “
Optimal Path Planning for Robotic Insertion of Steerable Electrode Arrays in Cochlear Implant Surgery
,”
ASME J. Med. Devices
1932-6181,
3
, p.
011001
.
6.
Zhang
,
J.
,
Bhattacharyya
,
S.
, and
Simaan
,
N.
, 2009, “
Model and Parameter Identification of Friction During Robotic Insertion of Cochlear-Implant Electrode Arrays
,”
IEEE International Conference on Robotics and Automation
, pp.
3528
3533
.
7.
Todd
,
C. A.
,
Naghdy
,
F.
, and
Svehla
,
M. J.
, 2007, “
Force Application During Cochlear Implant Insertion: An Analysis for Improvement of Surgeon Technique
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
7
), pp.
1247
1255
.
8.
Mirzadeh
,
H.
, and
Abbasi
,
F.
, 2004, “
Segmented Detachable Structure of Cochlear-Implant Electrodes for Close-Hugging Engagement With the Modiolus
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
68B
(
2
), pp.
191
198
.
9.
Hussong
,
A.
,
Rau
,
T.
,
Eilers
,
H.
,
Baron
,
S.
,
Heimann
,
B.
,
Leinung
,
M.
,
Lenarz
,
T.
, and
Majdani
,
O.
, 2008, “
Conception and Design of an Automated Insertion Tool for Cochlear Implants
,”
IEEE/EMBS Annual International Conference
, pp.
5593
5596
.
10.
Majdani
,
O.
,
Schurzig
,
D.
,
Hussong
,
A.
,
Rau
,
T.
,
Wittkopf
,
J.
,
Lenarz
,
T.
, and
Labadie
,
R. F.
, 2010, “
Force Measurement of Insertion of Cochlear Implant Electrode Arrays In Vitro: Comparison of Surgeon to Automated Insertion Tool
,”
Acta Oto-Laryngol.
0001-6489,
130
, pp.
31
36
.
11.
Schurzig
,
D.
,
Labadie
,
R. F.
,
Hussong
,
A.
,
Rau
,
T. S.
, and
Webster
,
R. J.
, III
, 2010, “
Design of a Tool Integrating Force Sensing With Automated Insertion in Cochlear Implantation
,”
IEEE/ASME Trans. Mechatron.
1083-4435, in press.
12.
Cohen
,
L. T.
,
Xiu
,
J.
,
Xu
,
S. A.
, and
Clark
,
G. M.
, 1996, “
Improved and Simplified Methods for Specifying Positions of the Electrode Bands of a Cochlear Implant Array
,”
Am. J. Otol.
0192-9763,
17
, pp.
859
865
.
13.
Yoo
,
S. K.
,
Wang
,
G.
,
Rubinstein
,
J. T.
,
Skinner
,
M. W.
, and
Vannier
,
M. W.
, 2000, “
Three-Dimensional Modeling and Visualization of the Cochlea on the Internet
,”
IEEE Trans. Inf. Technol. Biomed.
1089-7771,
4
(
2
), pp.
144
151
.
14.
Gulya
,
A. J.
, and
Steenerson
,
R. L.
, 1996, “
The Scala Vestibuli for Cochlear Implantation: An Anatomic Study
,”
Arch. Otolaryngol. Head Neck Surg.
0886-4470,
122
, pp.
130
132
.
15.
Wysocki
,
J.
, 1999, “
Dimensions of the Human Vestibular and Tympanic Scalae
,”
Hear. Res.
0378-5955,
135
, pp.
39
46
.
16.
Kawano
,
A.
,
Sheldon
,
H. L.
, and
Clark
,
G. M.
, 1996, “
Computer-Aided Three-Dimensional Reconstruction in Human Cochlear Maps: Measurement of the Lengths of Organ of Corti, Outer Wall, Inner Wall, and Rosenthal’s Canal
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
105
, pp.
701
709
.
17.
University of Utah Telerobotics Laboratory
, http://www.telerobotics.utah.edu/http://www.telerobotics.utah.edu/
You do not currently have access to this content.