A unique, robust, robotic transtibial prosthesis with regenerative kinetics was successfully built and a 6-month human subject trial was conducted on one male below-the-knee amputee under linear walking conditions. This paper presents the quasistatic system modeling, DC motor and transmission modeling and analyses, design methodology, and model verification. It also outlines an approach to the design and development of a robotic transtibial prosthesis. The test data will show that the true power and energy requirement predicted in the modeling and analyses is in good agreement with the measured data, verifying that the approach satisfactorily captures the physical system. The modeling and analyses in this paper describes a process to determine an optimal combination of motors, springs, gearboxes, and rotary to linear transmissions to significantly minimize the power and energy consumption. This kinetic minimization allows the downsizing of the actuation system and the battery required for daily use to a self-portable level.

1.
Hollander
,
K. W.
,
Ilg
,
R.
,
Sugar
,
T. G.
, and
Herring
,
D. E.
, 2006, “
An Efficient Robotic Tendon for Gait Assistance
,”
J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
788
791
.
2.
Casillas
,
J.
,
Dulieu
,
V.
, and
Cohen
,
M.
, 1995, “
Bioenergetic Comparison of a New Energy-Storing Foot and SACH Foot in Traumatic Below Knee Vascular Amputations
,”
Arch. Phys. Med. Rehabil.
0003-9993,
76
, pp.
39
44
.
3.
Rao
,
S.
,
Boyd
,
L.
, and
Mulroy
,
S.
, 1998, “
Segment Velocities in Normal and Transtibial Amputees: Prosthetic Design Implications
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
6
, pp.
219
226
.
4.
Torburn
,
L.
,
Perry
,
J.
,
Ayyappa
,
E.
, and
Shanfield
,
S.
, 1990, “
Below-Knee Amputee Gait With Dynamic Elastic Response Prosthetic Feet: A Pilot Study
,”
J. Rehabil. Res. Dev.
0748-7711,
27
, pp.
369
384
.
5.
van der Linden
,
M. L.
,
Solomonidis
,
S. E.
,
Spence
,
W. D.
,
Li
,
N.
, and
Paul
,
J. P.
, 1999, “
A Methodology for Studying the Effects of Various Types of Prosthetic Feet on the Biomechanics of Trans-Femoral Amputee Gait
,”
J. Biomech.
0021-9290,
32
, pp.
877
889
.
6.
Lehmann
,
J.
,
Price
,
R.
,
Boswell-Bessette
,
S.
,
Dralle
,
A.
,
Questad
,
K.
, and
Delateur
,
B.
, 1993, “
Comprehensive Analysis of Energy Storing Prosthetic Feet: Flex-Foot and Seattle Foot Versus Standard SACH Foot
,”
Arch. Phys. Med. Rehabil.
0003-9993,
74
, pp.
1225
1231
.
7.
MacFarlane
,
P.
,
Nielsen
,
D.
,
Shurr
,
D.
, and
Meier
,
K.
, 1991, “
Gait Comparisons for Below-Knee Amputees Using a Flex-Foot Versus a Conventional Prosthetic Foot
,”
Prosthet. Orthot Int.
0309-3646,
3
, pp.
150
161
.
8.
Postema
,
K.
,
Hermens
,
H.
,
de Vries
,
J.
,
Koopman
,
H.
, and
Eisma
,
W.
, 1997, “
Energy Storage and Release of Prosthetic Feet. Part 1: Biomechanical Analysis Related to User Benefits
,”
Prosthet. Orthot Int.
0309-3646,
21
, pp.
17
27
.
9.
Postema
,
K.
,
Hermens
,
H.
,
de Vries
,
J.
,
Koopman
,
H.
, and
Eisma
,
W.
, 1997, “
Energy Storage and Release of Prosthetic Feet. Part 2: Subjective Ratings of 2 Energy Storing and 2 Conventional Feet, User Choice of Foot and Deciding Factor
,”
Prosthet. Orthot Int.
0309-3646,
21
, pp.
28
34
.
10.
Klute
,
G.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
, 2002, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Robot. Res.
0278-3649,
21
(
4
), pp.
295
309
.
11.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
, 2008, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
J. Neural. Netw. Comput.
1049-2976,
21
, pp.
654
666
.
12.
Sawicki
,
G.
, and
Ferris
D. P.
, 2008, “
Mechanics and Energetics of Level Walking With Powered Ankle Exoskeletons
,”
J. Exp. Biol.
0022-0949,
211
, pp.
1402
1413
.
13.
Fite
,
K.
,
Withrow
,
T. J.
,
Shen
,
X.
,
Wait
,
K. W.
,
Mitchell
,
J. E.
, and
Goldfarb
,
M.
, 2008, “
A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
159
169
.
14.
Versluys
,
R.
,
Desomer
,
A.
,
Gerlinde
,
L.
,
Pareit
,
O.
,
Vanderborght
,
B.
,
Van der Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
, 2008, “
A Biomechantronical Transtibial Prosthesis Powered by Pleated Pneumatic Artificial Muscles
,”
Model. Identif. Control
0332-7353,
4
(
4
), pp.
394
405
.
15.
2009, Proprio Technical Manual, Ossur Orthopaedic Products and Services Company, http://www.ossur.comhttp://www.ossur.com
16.
Hitt
,
J.
, 2008, “
A Robotic Transtibial Prosthesis With Regenerative Kinetics
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
17.
Whittle
,
M. W.
, 1996,
Gait Analysis: An Introduction
,
2nd ed.
,
Butterworths
,
London
.
18.
Hitt
,
J.
,
Holgate
,
M.
,
Sugar
,
T.
,
Bellman
,
R.
, and
Hollander
,
K.
, 2009, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Robot
0143-991X,
36
(
5
), pp.
441
447
.
19.
Norton
,
R.
, 2005,
Machine Design: An Integrated Approach
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Ward
,
J.
,
Hitt
,
J.
,
Sugar
,
T.
, and
Bharadwaj
,
K.
, 2006, “
Dynamic Pace Controller for the Robotic Gait Trainer
,”
Proceedings of the ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Philadelphia, PA.
21.
Hitt
,
J.
,
Oymagil
,
A.
,
Sugar
,
T.
,
Hollander
,
K.
,
Boehler
,
A.
, and
Fleeger
,
J.
, 2007, “
Dynamically Controlled Ankle-Foot Orthosis With Regenerative Kinetics: Incrementally Attaining User Portability
,”
Proceedings of the 2007 IEEE International Conference on Robotics and Automation
, Roma, Italy.
22.
Hitt
,
J.
,
Holgate
,
M.
,
Bellman
,
R.
,
Sugar
,
T.
, and
Hollander
,
K.
, 2007, “
The SPARKy (Spring Ankle With Regenerative Kinetics) Project: Design and Analysis of a Robotic Transtibial Prosthesis
,”
Proceedings of the ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Las Vegas, NV.
You do not currently have access to this content.