This paper outlines the design of a wearable upper arm exoskeleton that can be potentially used to assist and train arm movements of stroke survivors or subjects with weak musculature. In the last 10 years, a number of upper arm training devices have emerged. However, due to their size and weight, their use is restricted to clinics and research laboratories. Our proposed wearable exoskeleton builds upon our research experience in wire driven manipulators and design of rehabilitative systems. The exoskeleton consists of three main parts: (i) an inverted U-shaped cuff that rests on the shoulder, (ii) a cuff on the upper arm, and (iii) a cuff on the forearm. Six motors mounted on the shoulder cuff drive the cuffs on the upper arm and forearm with the use of cables. In order to assess the performance of this exoskeleton prior to use on humans, a laboratory test-bed has been developed where this exoskeleton is mounted on a model skeleton, instrumented with sensors to measure joint angles. This paper describes the design details of the exoskeleton and addresses the key issue of parameter optimization to achieve a useful workspace based on kinematic and kinetic models. The optimization results have also been motivated from activities of daily living.

3.
Lucieer
,
P.
, and
Herder
,
J. L.
, 2005, “
Design of an Adjustable Compensation Mechanism for Use in a Passive Arm Support
,”
ASME International Design Engineering Technical Conference
, Long Beach, CA, Sept. 24–28, Paper No. DETC2005-85442.
4.
Reinkensmeyer
,
D. J.
,
Hogan
,
N.
,
Krebs
,
H. I.
,
Lehman
,
S. L.
, and
Lum
,
P. S.
, 1999, “
Rehabilitators, Robots, and Guides: New Tools for Neurological Rehabilitation
,”
Biomechanics and Neural Control of Movement
,
J.
Winters
and
P. E.
Crago
, eds.,
Springer
,
Berlin
.
5.
Lum
,
P. S.
,
Reikensmeyer
,
D. J.
, and
Lehman
,
S. L.
, 1993, “
Robotic Assist Devices for Bimanual Physical Therapy: Preliminary Experiments
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
1
, pp.
185
191
.
6.
Aisen
,
M. L.
,
Krebs
,
H. I.
, 1997, “
The Effect of Robot-Assisted Therapy and Rehabilitative Training on Motor Recovery Following Stroke
,”
Arch. Neurol.
0003-9942,
54
(
4
), pp.
443
446
.
7.
Perry
,
J. C.
, and
Rosen
,
J.
, 2006, “
Design of a 7 Degree-of-Freedom Upper-Limb Powered Exoskeleton
,”
BioRob 2006—The First IEEE/RAS EMBS International Conference on Biomedical Robotics and Biomechatronics
, Pisa, Italy, Feb. 20–22.
8.
Sanchez
,
R. J.
,
Liu
,
J.
,
Rao
,
S.
,
Shah
,
P.
,
Smith
,
R.
,
Rahman
,
T.
,
Cramer
,
S. C.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
, 2006, “
Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
14
(
3
), pp.
378
389
.
9.
Rahman
,
T.
,
Sample
,
W.
,
Jayakumar
,
S. M.
,
King
,
M.
,
Wee
,
J. Y.
,
Seliktar
,
R.
,
Alexander
,
M.
,
Scavina
,
M.
, and
Clark
,
A.
, 2006, “
Passive Exoskeletons for Assisting Limb Movement
,”
J. Rehabil. Res. Dev.
0748-7711,
43
(
5
), pp.
583
590
.
10.
Herder
,
J. L.
,
Vrijlandt
,
N.
,
Antonides
,
T.
,
Cloosterman
,
M.
, and
Mastenbroek
,
P. L.
, 2006, “
Principle and Design of a Mobile Arm Support for People With Muscular Weakness
,”
J. Rehabil. Res. Dev.
0748-7711,
43
(
5
), pp.
591
604
.
11.
Carignan
,
C.
,
Liszka
,
M.
, and
Roderick
,
S.
, 2005, “
Design of an Exoskeleton With Scapula Motion for Shoulder Rehabilitation
Proceedings of the IEEE International Conference on Advanced Robotics (ICAR)
, Seattle, WA, pp.
524
531
.
12.
Yang
,
G.
,
Ho
,
H. L.
,
Chen
,
W.
,
Lin
,
W.
,
Yeo
,
S. H.
, and
Kurbanhusen
,
M. S.
, 2004, “
A Haptic Device Wearable on a Human Arm
,”
IEEE Conference on Robotics, Automation and Mechatronics
, Vol.
1
(
1
), pp.
243
247
.
13.
Mustafa
,
S. K.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Lin
,
W.
, 2006, “
Optimal Design of a Bio-Inspired Anthropocentric Shoulder Rehabilitator
,”
Applied Bionics and Biomechanics
,
3
(
3
), pp.
199
208
. 1176-2322
14.
Weihai
,
C.
,
Quanzhu
,
C.
,
Jianbin
,
Z.
, and
Shouqian
,
Y.
, 2006, “
Kinematics Control for a 7-DOF Cable-Driven Anthropomorphic Arm
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, China.
15.
Zheng
,
M.
,
Weihai
,
C.
,
Shouqian
,
Y.
, and
Xingming
,
W.
, 2006, “
Kinematic Analysis for a 7-DOF Modular Hybrid-Driven Manipulator
,”
Proceedings of the IEEE International Conference on Industrial Informatics
, pp.
1363
1368
.
16.
Ullrich
,
N. G.
,
Di Lieto
,
G.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
, 2001, “
Design and Optimization of a Purely Rotational 3-DOF Haptic Device
,”
Proceedings of the Tenth IEEE International Workshop on Robot and Human Interactive Communication
.
17.
Oh
,
S. R.
-
, and
Agrawal
,
S. K.
, 2006, “
Feasible Workspace of a Set Point Controller for a Cable Suspended Robot With Input Constraints and Disturbances
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
4
), pp.
735
742
.
18.
Oh
,
S. R.
-
, and
Agrawal
,
S. K.
, 2006, “
Computationally Efficient Feasible Set Points Generation and Control of a Cable Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
3
), pp.
551
558
.
19.
Oh
,
S. R.
-
, and
Agrawal
,
S. K.
, 2005, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
457
464
.
20.
Anthropometric Source Book, 1978, Vol. 1: Anthropometry for Designers, NASA Reference Publication 1024.
You do not currently have access to this content.