The Dampace exoskeleton combines functional exercises resembling activities of daily living with impairment-targeted force-coordination training. The goal of this paper is to evaluate the performance of the Dampace. In the design, the joint rotations are decoupled from the joint translations; the robot axes align themselves to the anatomical axes, overcoming some of the traditional difficulties of exoskeletons. Setup times are reduced to mere minutes and static reaction forces are kept to a minimum. The Dampace uses hydraulic disk brakes, which can resist rotations with up to 50 N m and have a torque bandwidth of 10 Hz for multisine torques of 20 N m. The brakes provide passive control over the movement; the patients’ movements can be selectively resisted, but active movement assistance is impossible and virtual environments are restricted. However, passive actuators are inherently safe and force active patient participation. In conclusion, the Dampace is well suited to offer force-coordination training with functional exercises.

1.
Hogan
,
N.
,
Krebs
,
H.
,
Sharon
,
A.
, and
Charnnarong
,
J.
, 1995, “
Interactive Robotic Therapist
,” U.S. Patent No. 5,466,213.
2.
Krebs
,
H.
,
Palazzolo
,
J.
,
Dipietro
,
L.
,
Volpe
,
B.
, and
Hogan
,
N.
, 2003, “
Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy
,”
Auton. Rob.
0929-5593,
15
(
1
), pp.
7
20
.
3.
Burgar
,
C.
,
Lum
,
P.
,
Shor
,
P.
, and
van der Loos
,
H.
, 2000, “
Development of Robots for Rehabilitation Therapy: The Palo Alto VA/Stanford Experience
,”
J. Rehabil. Res. Dev.
0748-7711,
37
(
6
), pp.
663
673
.
4.
Sukal
,
T.
,
Ellis
,
M.
, and
Dewald
,
J.
, 2007, “
Shoulder Abduction-Induced Reductions in Reaching Work Area Following Hemiparetic Stroke: Neuroscientific Implications
,”
Exp. Brain Res.
0014-4819,
183
(
2
), pp.
215
223
.
5.
Nef
,
T.
,
Mihelj
,
M.
, and
Riener
,
R.
, 2007, “
ARMin: A Robot for Patient-Cooperative Arm Therapy
,”
Med. Biol. Eng. Comput.
0140-0118,
45
(
9
), pp.
887
900
.
6.
van der Lee
,
J. H.
,
Snels
,
I. A.
,
Beckerman
,
H.
,
Lankhorst
,
G. J.
,
Wagenaar
,
R. C.
, and
Bouter
,
L. M.
, 2001, “
Exercise Therapy for Arm Function in Stroke Patients: A Systematic Review of Randomized Controlled Trials
,”
Clin. Rehabil.
0269-2155,
15
(
1
), pp.
20
31
.
7.
Platz
,
T.
, 2003, “
Evidence-Based Arm Rehabilitation—A Systematic Review of the Literature
,”
Nervenarzt
0028-2804,
74
(
10
), pp.
841
849
.
8.
Prange
,
G.
,
Jannink
,
M.
,
Groothuis-Oudshoorn
,
C.
,
Hermens
,
H.
, and
IJzerman
,
M.
, 2006, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
0748-7711,
43
(
2
), pp.
171
184
.
9.
Kwakkel
,
G.
,
Kollen
,
B.
, and
Krebs
,
H.
, 2008, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabil. Neural Repair
,
22
(
2
), pp.
111
121
. 1545-9683
10.
Schmidt
,
R.
, and
Lee
,
T.
, 1999,
Motor Control and Learning
,
3rd ed.
,
Human Kinetics
,
Champaign, IL
.
11.
Kwakkel
,
G.
,
Wagenaar
,
R.
,
Twisk
,
J.
,
Lankhorst
,
G.
, and
Koetsier
,
J.
, 1999, “
Intensity of Leg and Arm Training After Primary Middle-Cerebral-Artery Stroke: A Randomised Trial
,”
Lancet
0140-6736,
354
(
9174
), pp.
191
196
.
12.
Barreca
,
S.
,
Wolf
,
S.
,
Fasoli
,
S.
, and
Bohannon
,
R.
, 2003, “
Treatment Interventions for the Paretic Upper Limb of Stroke Survivors: A Critical Review
,”
Neurorehabil. Neural Repair
,
17
(
4
), pp.
220
226
. 1545-9683
13.
Feys
,
H.
,
de Weerdt
,
W.
,
Verbeke
,
G.
,
Steck
,
G.
,
Capiau
,
C.
,
Kiekens
,
C.
,
Dejaeger
,
E.
,
van Hoydonck
,
G.
,
Vermeersch
,
G.
, and
Cras
,
P.
, 2004, “
Early and Repetitive Stimulation of the Arm Can Substantially Improve the Long-Term Outcome After Stroke: A 5-Year Follow-Up Study of a Randomized Trial
,”
Stroke
0039-2499,
35
(
4
), pp.
924
929
.
14.
Liu
,
J.
,
Cramer
,
S.
, and
Reinkensmeyer
,
D.
, 2006, “
Learning to Perform a New Movement With Robotic Assistance: Comparison of Haptic Guidance and Visual Demonstration
,”
J. Neuroengineering Rehabil.
1743-0003,
3
, Paper No. 20.
15.
Prange
,
G.
,
Jannink
,
M.
,
Stienen
,
A.
,
van der Kooij
,
H.
,
IJzerman
,
M.
, and
Hermens
,
H.
, 2009, “
Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients
,”
Neurorehabil. Neural Repair
1545-9683,
23
(
5
), pp.
478
485
.
16.
Prange
,
G.
,
Kallenberg
,
L.
,
Jannink
,
M.
,
Stienen
,
A.
,
van der Kooij
,
H.
,
IJzerman
,
M.
, and
Hermens
,
H.
, 2009, “
Influence of Gravity Compensation on Muscle Activity During Reach and Retrieval in Healthy Elderly
,”
J. Electromyogr Kinesiol
1050-6411,
19
(
2
), pp.
e40
e49
.
17.
Brunnstrom
,
S.
, 1970,
Movement Therapy in Hemiplegia: A Neurophysiological Approach
,
Harper and Row
,
New York
.
18.
Beer
,
R.
,
Dewald
,
J.
,
Dawson
,
M.
, and
Rymer
,
W.
, 2004, “
Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis
,”
Exp. Brain Res.
0014-4819,
156
(
4
), pp.
458
470
.
19.
Ellis
,
M.
,
Holubar
,
B.
,
Acosta
,
A.
,
Beer
,
R.
, and
Dewald
,
J.
, 2005, “
Modifiability of Abnormal Isometric Elbow and Shoulder Joint Torque Coupling After Stroke
,”
Muscle Nerve
0148-639X,
32
(
2
), pp.
170
178
.
20.
Beer
,
R.
,
Ellis
,
M.
,
Holubar
,
B.
, and
Dewald
,
J.
, 2007, “
Impact of Gravity Loading on Post-Stroke Reaching and Its Relationship to Weakness
,”
Muscle Nerve
0148-639X,
36
(
2
), pp.
242
250
.
21.
Ellis
,
M.
,
Acosta
,
A.
,
Yao
,
J.
, and
Dewald
,
J.
, 2007, “
Position-Dependent Torque Coupling and Associated Muscle Activation in the Hemiparetic Upper Extremity
,”
Exp. Brain Res.
0014-4819,
176
(
4
), pp.
594
602
.
22.
Ellis
,
M.
,
Sukal
,
T.
,
DeMott
,
T.
, and
Dewald
,
J.
, 2007, “
ACT-3D Exercise Targets Gravity-Induced Discoordination and Improves Reaching Work Area in Individuals With Stroke
,”
Proceedings of the Tenth ICORR ’07
.
23.
Ellis
,
M. D.
,
Sukal
,
T.
,
DeMott
,
T.
, and
Dewald
,
J. P. A.
, 2008, “
Augmenting Clinical Evaluation of Hemiparetic Arm Movement With a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading
,”
Neurorehabil. Neural Repair
1545-9683,
22
(
4
), pp.
321
329
.
24.
Twitchell
,
T.
, 1951, “
The Restoration of Motor Function Following Hemiplegia in Man
,”
Brain
0006-8950,
74
(
4
), pp.
443
80
.
25.
Krebs
,
H.
,
Mernoff
,
S.
,
Fasoli
,
S.
,
Hughes
,
R.
,
Stein
,
J.
, and
Hogan
,
N.
, 2008, “
A Comparison of Functional and Impairment-Based Robotic Training in Severe to Moderate Chronic Stroke: A Pilot Study
,”
NeuroRehabilitation
,
23
(
1
), pp.
81
87
. 1053-8135
26.
Rutherford
,
O.
, 1988, “
Muscular Coordination and Strength Training. Implications for Injury Rehabilitation
,”
Sports Med.
0112-1642,
5
(
3
), pp.
196
202
.
27.
Weiss
,
A.
,
Suzuki
,
T.
,
Bean
,
J.
, and
Fielding
,
R.
, 2000 “
High Intensity Strength Training Improves Strength and Functional Performance After Stroke
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
79
(
4
), pp.
369
376
.
28.
Hortobagyi
,
T.
,
Tunnel
,
D.
,
Moody
,
J.
,
Beam
,
S.
, and
DeVita
,
P.
, 2001, “
Low- or High-Intensity Strength Training Partially Restores Impaired Quadriceps Force Accuracy and Steadiness in Aged Adults
,”
J. Gerontol., Ser. A
1079-5006,
56
(
1
), pp.
B38
B47
.
29.
Fasoli
,
S.
,
Krebs
,
H.
,
Stein
,
J.
,
Frontera
,
W.
, and
Hogan
,
N.
, 2003, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
0003-9993,
84
(
4
), pp.
477
482
.
30.
Morris
,
S.
,
Dodd
,
K.
, and
Morris
,
M.
, 2004, “
Outcomes of Progressive Resistance Strength Training Following Stroke: A Systematic Review
,”
Clin. Rehabil.
0269-2155,
18
(
1
), pp.
27
39
.
31.
Ouellette
,
M.
,
LeBrasseur
,
N.
,
Bean
,
J.
,
Phillips
,
W.
,
Stein
,
J.
,
Frontera
,
W.
, and
Fielding
,
R.
, 2004, “
High-Intensity Resistance Training Improves Muscle Strength, Self-Reported Function, and Disability in Long-Term Stroke Survivors
,”
Stroke
0039-2499,
35
(
6
), pp.
1404
1409
.
32.
Yang
,
Y.
,
Wang
,
R.
,
Lin
,
K.
,
Chu
,
M.
, and
Chan
,
R.
, 2006, “
Task-Oriented Progressive Resistance Strength Training Improves Muscle Strength and Functional Performance in Individuals With Stroke
,”
Clin. Rehabil.
0269-2155,
20
(
10
), pp.
860
870
.
33.
Ada
,
L.
,
Dorsch
,
S.
, and
Canning
,
C.
, 2006, “
Strengthening Interventions Increase Strength and Improve Activity After Stroke: A Systematic Review
,”
Aust. J. Phys.
0004-9506,
52
(
4
), pp.
241
248
.
34.
Kahn
,
L.
,
Lum
,
P.
,
Rymer
,
W.
, and
Reinkensmeyer
,
D.
, 2006, “
Robot-Assisted Movement Training for the Stroke-Impaired Arm: Does It Matter What the Robot Does?
,”
J. Rehabil. Res. Dev.
0748-7711,
43
(
5
), pp.
619
630
.
35.
Bohannon
,
R.
, 2007, “
Muscle Strength and Muscle Training After Stroke
,”
J. Rehabil. Med.
,
39
(
1
), pp.
14
20
. 1650-1977
36.
Patten
,
C.
,
Dozono
,
J.
,
Schmidt
,
S.
,
Jue
,
M.
, and
Lum
,
P.
, 2006, “
Combined Functional Task Practice and dynamic High Intensity Resistance Training Promotes Recovery of Upper-Extremity Motor Function in Post-Stroke Hemiparesis: A Case Study
,”
J. Neurol. Phys. Ther.
,
30
(
3
), pp.
99
115
. 1557-0576
37.
Reinkensmeyer
,
D.
,
Emken
,
J.
, and
Cramer
,
S.
, 2004, “
Robotics, Motor Learning, and Neurologic Recovery
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
497
525
.
38.
Patton
,
J.
,
Stoykov
,
M.
,
Kovic
,
M.
, and
Mussa-Ivaldi
,
F.
, 2006, “
Evaluation of Robotic Training Forces That Either Enhance or Reduce Error in Chronic Hemiparetic Stroke Survivors
,”
Exp. Brain Res.
0014-4819,
168
(
3
), pp.
368
383
.
39.
Poole
,
J.
, 1991, “
Application of Motor Learning Principles in Occupational Therapy
,”
Am. J. Occup. Ther.
0272-9490,
45
(
6
), pp.
531
537
.
40.
Dobkin
,
B.
, 2004, “
Strategies for Stroke Rehabilitation
,”
Lancet Neurol.
,
3
(
9
), pp.
528
36
. 1474-4422
41.
Hogan
,
N.
,
Krebs
,
H.
,
Rohrer
,
B.
,
Palazzolo
,
J.
,
Dipietro
,
L.
,
Fasoli
,
S.
,
Stein
,
J.
,
Hughes
,
R.
,
Frontera
,
W.
,
Lynch
,
D.
, and
Volpe
,
B.
, 2006, “
Motions or Muscles? Some Behavioral Factors Underlying Robotic Assistance of Motor Recovery
,”
J. Rehabil. Res. Dev.
0748-7711,
43
(
5
), pp.
605
18
.
42.
Stienen
,
A.
,
Hekman
,
E.
,
van der Helm
,
F.
,
Prange
,
G.
,
Jannink
,
M.
,
Aalsma
,
A.
, and
van der Kooij
,
H.
, 2007, “
Dampace: Dynamic Force-Coordination Trainer for the Upper Extremities
,”
Proceedings of the Tenth ICORR ’07
.
43.
Hogan
,
N.
,
Krebs
,
H.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
, 1992, “
MIT-MANUS: A Workstation for Manual Therapy and Training. I
,”
Proceedings of the Second ROMAN ’92
, pp.
161
165
.
44.
Reinkensmeyer
,
D.
,
Takahashi
,
C.
,
Timoszyk
,
W.
,
Reinkensmeyer
,
A.
, and
Kahn
,
L.
, 2001, “
Design of Robot Assistance for Arm Movement Therapy Following Stroke
,”
Adv. Rob.
0169-1864,
14
(
7
), pp.
625
637
.
45.
Loureiro
,
R.
,
Amirabdollahian
,
F.
,
Topping
,
M.
,
Driessen
,
B.
, and
Harwin
,
W.
, 2003, “
Upper Limb Robot Mediated Stroke Therapy—Gentle/s Approach
,”
Auton. Rob.
0929-5593,
15
(
1
), pp.
35
51
.
46.
Nakai
,
A.
,
Ohashi
,
T.
, and
Hashimoto
,
H.
, 1998, “
7 DOF Arm Type Haptic Interface for Teleoperation and Virtual Reality Systems
,”
Proceedings of the IROS ’98
, Vol.
2
, pp.
1266
1271
.
47.
Sanchez
,
R.
,
Wolbrecht
,
E.
,
Smith
,
R.
,
Liu
,
J.
,
Rao
,
S.
,
Cramer
,
S.
,
Rahman
,
T.
,
Bobrow
,
J.
, and
Reinkensmeyer
,
D.
, 2005, “
A Pneumatic Robot for Re-Training Arm Movement After Stroke: Rationale and Mechanical Design
,”
Proceedings of the Tenth ICORR ’05
, pp.
500
504
.
48.
Frisoli
,
A.
,
Rocchi
,
F.
,
Marcheschi
,
S.
,
Dettori
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
, 2005, “
A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments
,”
Proceedings of the First WHC ’05
, pp.
195
201
.
49.
Carignan
,
C.
,
Tang
,
J.
,
Roderick
,
S.
, and
Naylor
,
M.
, 2007, “
A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton
,”
Proceedings of the Tenth ICORR ’07
.
50.
Perry
,
J.
,
Rosen
,
J.
, and
Burns
,
S.
, 2007, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
12
(
4
), pp.
408
417
.
51.
Mayhew
,
D.
,
Bachrach
,
B.
,
Rymer
,
W.
, and
Beer
,
R.
, 2005, “
Development of the MACARM—A Novel Cable Robot for Upper Limb Neurorehabilitation
,”
Proceedings of the Tenth ICORR ’05
, pp.
299
302
.
52.
Masiero
,
S.
,
Celia
,
A.
,
Armani
,
M.
, and
Rosati
,
G.
, 2006, “
A Novel Robot Device in Rehabilitation of Post-Stroke Hemiplegic Upper Limbs
,”
Aging Clin. Exp. Res.
,
18
(
6
), pp.
531
535
. 1594-0667
53.
Stienen
,
A.
,
Hekman
,
E.
,
van der Helm
,
F.
,
Prange
,
G.
,
Jannink
,
M.
,
Aalsma
,
A.
, and
van der Kooij
,
H.
, 2007, “
Freebal: Dedicated Gravity Compensation for the Upper Extremities
,”
Proceedings of the Tenth ICORR ’07
.
54.
Reinkensmeyer
,
D.
,
Kahn
,
L.
,
Averbuch
,
M.
,
McKenna-Cole
,
A.
,
Schmit
,
B.
, and
Rymer
,
W.
, 2000, “
Understanding and Treating Arm Movement Impairment After Chronic Brain Injury: Progress With the Arm Guide
,”
J. Rehabil. Res. Dev.
0748-7711,
37
(
6
), pp.
653
662
.
55.
Colombo
,
R.
,
Pisano
,
F.
,
Micera
,
S.
,
Mazzone
,
A.
,
Delconte
,
C.
,
Carrozza
,
M.
,
Dario
,
P.
, and
Minuco
,
G.
, 2005, “
Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
13
(
3
), pp.
311
324
.
56.
Cai
,
L.
,
Fong
,
A.
,
Otoshi
,
C.
,
Liang
,
Y.
,
Burdick
,
J.
,
Roy
,
R.
, and
Edgerton
,
V.
, 2006, “
Implications of Assist-As-Needed Robotic Step Training After a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning
,”
J. Neurosci.
0270-6474,
26
(
41
), pp.
10564
10568
.
57.
Kahn
,
L.
,
Averbuch
,
M.
,
Rymer
,
W.
, and
Reinkensmeyer
,
D.
, 2001, “
Comparison of Robot-Assisted Reaching to Free Reaching in Promoting Recovery From Chronic Stroke
,”
Proceedings of the Seventh ICORR ’01
, pp.
39
44
.
58.
Wolbrecht
,
E.
,
Chan
,
V.
,
Reinkensmeyer
,
D.
, and
Bobrow
,
J.
, 2008, “
Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
16
(
3
), pp.
286
297
.
59.
Bovend’Eerdt
,
T.
,
Newman
,
M.
,
Barker
,
K.
,
Dawes
,
H.
,
Minelli
,
C.
, and
Wade
,
D.
, 2008, “
The Effects of Stretching in Spasticity: A Systematic Review
,”
Arch. Phys. Med. Rehabil.
0003-9993,
89
(
7
), pp.
1395
1406
.
60.
Ellis
,
M.
,
Sukal
,
T.
, and
Dewald
,
J.
, “
Progressive Shoulder Abduction Loading is a Crucial Element of Arm Rehabilitation in Chronic Stroke
,”
Neurorehabil. Neural Repair
, in press. 1545-9683
61.
Patton
,
J.
,
Small
,
S.
, and
Rymer
,
W.
, 2008, “
Functional Restoration for the Stroke Survivor: Informing the Efforts of Engineers
,”
Top. Stroke Rehabil.
1074-9357,
15
(
6
), pp.
521
541
.
62.
Wu
,
G.
,
van der Helm
,
F.
,
Veeger
,
H.
,
Makhsous
,
M.
,
van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F.
, and
Buchholz
,
B.
, 2005, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
981
992
.
63.
van Ouwerkerk
,
W.
,
van der Sluijs
,
J.
,
Nollet
,
F.
,
Barkhof
,
F.
, and
Slooff
,
A.
, 2000, “
Management of Obstetric Brachial Plexus Lesions: State of the Art and Future Developments
,”
Childs Nerv. Syst.
0256-7040,
16
(
10–11
), pp.
638
644
.
64.
van Andel
,
C.
,
Wolterbeek
,
N.
,
Doorenbosch
,
C.
,
Veeger
,
D.
, and
Harlaar
,
J.
, 2008, “
Complete 3D Kinematics of Upper Extremity Functional Tasks
,”
Gait and Posture
0966-6362,
27
(
1
), pp.
120
127
.
65.
Lenarcic
,
J.
, and
Stanisic
,
M.
, 2003, “
A Humanoid Shoulder Complex and the Humeral Pointing Kinematics
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
3
), pp.
499
506
.
66.
Nef
,
T.
, and
Riener
,
R.
, 2008, “
Shoulder Actuation Mechanisms for Arm Rehabilitation Exoskeletons
,”
Proceedings of the Biorob ’08
.
67.
Schiele
,
A.
, and
van der Helm
,
F.
, 2006, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
14
(
4
), pp.
456
469
.
68.
Schiele
,
A.
, 2008, “
An Explicit Model to Predict and Interpret Constraint Force Creation in pHRI With Exoskeletons
,”
Proceedings of the ICRA ’08
, pp.
1324
1330
.
69.
Stienen
,
A.
,
Hekman
,
E.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
, 2009, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob. Autom.
1042-296X,
25
(
3
), pp.
628
633
.
70.
Grange
,
S.
,
Conti
,
F.
,
Rouiller
,
P.
,
Helmer
,
P.
, and
Baur
,
C.
, 2001, “
The Delta Haptic Device
,”
Proceedings of the Fifth Mecatronics ’01
.
71.
Pratt
,
G.
, and
Williamson
,
M.
, 1995, “
Series Elastic Actuators
,”
Proceedings of the IROS ’95
, pp.
399
406
.
72.
Robinson
,
D.
, 2000, “
Design and Analysis of Series Elasticity in Closed-Loop Actuator Force Control
,” Ph.D. thesis, MIT, Cambridge, MA.
73.
Veneman
,
J.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
, 2006, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Robot. Res.
0278-3649,
25
(
3
), pp.
261
281
.
74.
Ekkelenkamp
,
R.
,
Veltink
,
P.
,
Stramigioli
,
S.
, and
van der Kooij
,
H.
, 2007, “
Evaluation of a Virtual Model Control for the Selective Support of Gait Functions Using an Exoskeleton
,”
Proceedings of the Tenth ICORR ’07
.
75.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van der Kooij
,
H.
, 2008, “
Compliant Actuation of Rehabilitation Robots: Benefits and Limitations of Series Elastic Actuators
,”
IEEE Rob. Autom. Mag.
1070-9932,
15
(
3
), pp.
60
69
.
76.
Stienen
,
A.
,
Hekman
,
E.
,
Schouten
,
A.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
, “
Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeletons
,”
Appl. Bionics Biomech.
, in press.
77.
Jenkins
,
G.
, and
Watts
,
D.
, 1969,
Spectral Analysis and Its Applications
,
Holden-Day
,
San Francisco, CA
.
78.
Bendat
,
J.
, and
Piersol
,
A.
, 1986,
Random Data: Analysis and Measurement Procedures
,
Wiley
,
New York
.
79.
Simmonds
,
A.
, 1991, “
Electro-Rheological Valves in a Hydraulic Circuit
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
138
(
4
), pp.
400
404
.
80.
Spencer
,
B. F.
, Jr.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1997, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
0733-9399,
123
(
3
), pp.
230
238
.
81.
Sims
,
N.
,
Holmes
,
N.
, and
Stanway
,
R.
, 2004, “
A Unified Modelling and Model Updating Procedure for Electrorheological and Magnetorheological Vibration Dampers
,”
Smart Mater. Struct.
0964-1726,
13
(
1
), pp.
100
121
.
82.
Herder
,
J.
, 2001, “
Energy-Free Systems. Theory, Conception and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
83.
Barbalace
,
A.
,
Luchetta
,
A.
,
Manduchi
,
G.
,
Moro
,
M.
,
Soppelsa
,
A.
, and
Taliercio
,
C.
, 2008, “
Performance Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard Real-Time Application
,”
IEEE Trans. Nucl. Sci.
0018-9499,
55
(
1
), pp.
435
439
.
84.
Bucher
,
R.
, and
Balemi
,
S.
, 2006, “
Rapid Controller Prototyping With MATLAB/SIMULINK and Linux
,”
Control Eng. Pract.
0967-0661,
14
(
2
), pp.
185
192
.
87.
Mitsuhashi
,
K.
,
Seki
,
K.
,
Akamatsu
,
C.
, and
Handa
,
Y.
, 2007, “
Modulation of Excitability in the Cerebral Cortex Projecting to Upper Extremity Muscles by Rotational Positioning of the Forearm
,”
Tohoku J. Exp. Med.
0040-8727,
212
(
3
), pp.
221
228
.
88.
Pratt
,
J.
, 1995, “
Virtual Model Control of a Biped Walking Robot
,” Ph.D. thesis, MIT, Cambridge, MA.
89.
Veneman
,
J.
,
Kruidhof
,
R.
,
Hekman
,
E.
,
Ekkelenkamp
,
R.
,
van Asseldonk
,
E.
, and
van der Kooij
,
H.
, 2007, “
Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
15
(
3
), pp.
379
386
.
You do not currently have access to this content.