This paper presents an optimal path planning method of steerable electrode arrays for robot-assisted cochlear implant surgery. In this paper, the authors present a novel design of steerable electrode arrays that can actively bend at the tip. An embedded strand in the electrode array provides an active steering degrees-of-freedom (DoF). This paper addresses the calibration of the steerable electrode array and the optimal path planning for inserting it into planar and three-dimensional scala tympani models. The goal of the path planning is to minimize the intracochlear forces that the electrode array applies on the walls of the scala tympani during insertion. This problem is solved by designing insertion path planning algorithms that provide best fit between the shape of the electrode array and the curved scala tympani during insertion. Optimality measures that account for shape discrepancies between the steerable electrode array and the scala tympani are used to solve for the optimal path planning of the robot. Different arrangements of DoF and insertion speed force feedback (ISFF) are simulated and experimentally validated in this paper. A quality of insertion metric describing the gap between the steerable electrode array and the scala tympani model is presented and its correspondence to the insertion force is shown. The results of using 1DoF, 2DoF, and 4DoF electrode array insertion setups are compared. The 1DoF insertion setup uses nonsteerable electrode arrays. The 2DoF insertion setup uses single axis insertion with steerable electrode arrays. The 4DoF insertion setup allows full control of the insertion depth and the approach angle of the electrode with respect to the cochlea while using steerable electrode arrays. It is shown that using steerable electrode arrays significantly reduces the maximal insertion force (59.6% or more) and effectively prevents buckling of the electrode array. The 4DoF insertion setup further reduces the maximal electrode insertion forces. The results of using ISFF for steerable electrodes show a slight decrease in the insertion forces in contrast to a slight increase for nonsteerable electrodes. These results show that further research is required in order to determine the optimal ISFF control law and its effectiveness in reducing electrode insertion forces.

1.
Jayender
,
J.
,
Patel
,
R. V.
, and
Nikumb
,
S.
, 2006, “
Robot-Assisted Catheter Insertion Using Hybrid Impedance Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
607
612
.
2.
Ikuta
,
K.
,
Ikuta
,
K.
,
Yamamoto
,
K.
, and
Sasaki
,
K.
, 2003, “
Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
1103
1108
.
3.
Chang
,
J. K.
,
Chung
,
S.
,
Lee
,
Y.
,
Park
,
J.
,
Lee
,
S. K.
,
Yang
,
S. S.
,
Moon
,
S. Y.
,
Tschepe
,
J.
,
Chee
,
Y.
, and
Han
,
D. C.
, 2002, “
Development of Endovascular Microtools
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
824
831
. 0960-1317
4.
Dario
,
P.
,
Carrozza
,
M. C.
, and
Pietrabissa
,
A.
, 1999, “
Development and In Vitro Testing of a Miniature Robotic System for Computer-Assisted Colonoscopy
,”
Comput. Aided Surg.
,
4
(
1
), pp.
1
14
. 1092-9088
5.
Zhang
,
J.
,
Xu
,
K.
,
Simaan
,
N.
, and
Manolidis
,
S.
, 2006, “
A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays
,”
Medical Image Computing and Computer-Assisted Intervention
(
Lecture Notes in Computer Science
Vol.
4190
),
Springer Berlin/Heidelberg
,
Copenhagen, Denmark
, pp.
33
40
.
6.
Zheng
,
Y. F.
,
Pei
,
R.
, and
Chen
,
C.
, 1991, “
Strategies for Automatic Assembly of Deformable Objects
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2598
2603
.
7.
Rohde
,
F. V.
, 1953, “
Large Deflections of Cantilever Beam With Uniformly Distributed Load
,”
Q. Appl. Math.
,
11
, pp.
337
338
. 0033-569X
8.
Nakagaki
,
H.
,
Kitagi
,
K.
,
Ogasawara
,
T.
, and
Tsukune
,
H.
, 1996, “
Study of Insertion Task of a Flexible Wire Into a Hole by Using Visual Tracking Observed by Stereo Vision
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3209
3214
.
9.
Wakamatsu
,
H.
,
Hirai
,
S.
, and
Iwata
,
K.
, 1996, “
Static Analysis of Deformable Object Grasping Based on Bounded Force Closure
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3324
3329
.
10.
Liu
,
Z.
, and
Nakamura
,
T.
, 2002, “
Learning Insertion Task of a Flexible Beam by Virtual Agents
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
3290
3295
.
11.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
, 1992, “
Applying a Flexible Microactuator to Robotic Mechanisms
,”
IEEE Control Syst. Mag.
,
12
(
1
), pp.
21
27
. 0272-1708
12.
Nakagaki
,
H.
,
Kitagaki
,
K.
, and
Tsukune
,
H.
, 1995, “
Study of Insertion Task of a Flexible Beam Into a Hole
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
330
335
.
13.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
, 1994, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
3
), pp.
343
354
.
14.
Zanganeh
,
K. E.
, and
Angeles
,
J.
, 1995, “
The Inverse Kinematics of Hyper-Redundant Manipulators Using Splines
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2797
2802
.
15.
Mochiyama
,
H.
, and
Kobayashi
,
H.
, 1999, “
The Shape Jacobian of a Manipulator With Hyper Degrees of Freedom
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
2837
2842
.
16.
Kiefer
,
J.
,
Weber
,
A.
,
Pfennigdorff
,
T.
, and
Von Ilberg
,
C.
, 2000, “
Scala Vestibuli Insertion in Cochlear Implantation: A Valuable Alternative for Cases With Obstructed Scala Tympani
,”
ORL
0301-1569,
62
(
5
), pp.
251
256
.
17.
Roland
,
J. T. J.
, 2005, “
A Model for Cochlear Implant Electrode Insertion and Force Evaluation: Results With a New Electrode Design and Insertion Technique
,”
Laryngoscope
0023-852X,
115
(
8
), pp.
1325
1339
.
18.
Kha
,
H. N.
,
Chen
,
B. K.
,
Clark
,
G. M.
, and
Jones
,
R.
, 2004, “
Stiffness Properties for Nucleus Standard Straight and Contour Electrode Arrays
,”
Med. Eng. Phys.
,
26
(
8
), pp.
677
685
. 1350-4533
19.
Patrick
,
J.
, and
McFarlane
,
J.
, 1987, “
Characterization of Mechanical Properties of Single Electrodes and Multielectrodes
,”
Ann. Otol. Rhinol. Laryngol.
,
96
, pp.
46
48
. 0003-4894
20.
Chen
,
B. K.
,
Clark
,
G. M.
, and
Jones
,
R.
, 2003, “
Evaluation of Trajectories and Contact Pressures for the Straight Nucleus Cochlear Implant Electrode Array—A Two Dimensional Application of Finite Element Analysis
,”
Med. Eng. Phys.
,
25
, pp.
141
147
. 1350-4533
21.
Wardrop
,
P.
,
Whinney
,
D.
,
Rebscher
,
S. J.
,
Roland
,
J. J. T.
,
Luxford
,
W.
, and
Leake
,
P. A.
, 2005, “
A Temporal Bone Study of Insertion Trauma and Intracochlear Position of Cochlear Implant Electrodes. I: Comparison of Nucleus Banded and Nucleus Contour™ Electrodes
,”
Hear. Res.
0378-5955,
203
(
1–2
), pp.
54
67
.
22.
Adunka
,
O.
,
Gstoettner
,
W.
,
Hambek
,
M.
,
Unkelbach
,
M. H.
,
Radeloff
,
A.
, and
Kiefer
,
J.
, 2004, “
Preservation of Basal Inner Ear Structures in Cochlear Implantation
,”
ORL
0301-1569,
66
(
6
), pp.
306
312
.
23.
Adunka
,
O.
,
Kiefer
,
J.
,
Unkelbach
,
M. H.
,
Lehnert
,
T.
, and
Gstoettner
,
W.
, 2004, “
Development and Evaluation of an Improved Cochlear Implant Electrode Design for Electric Acoustic Stimulation
,”
Laryngoscope
,
114
(
7
), pp.
1237
1241
. 0023-852X
24.
Eshraghi
,
A. A.
,
Yang
,
N. W.
, and
Balkany
,
T. J.
, 2003, “
Comparative Study of Cochlear Damage With Three Perimodiolar Electrode Designs
,”
Laryngoscope
,
113
(
3
), pp.
415
419
. 0023-852X
25.
Chen
,
B.
,
Kha
,
H.
, and
Clark
,
G.
, 2007, “
Development of a Steerable Cochlear Implant Electrode Array
,”
Third Kuala Lumpur International Conference on Biomedical Engineering
, pp.
607
610
.
26.
Wang
,
J.
,
Gulari
,
M. N.
, and
Wise
,
K. D.
, 2006, “
A Parylene-Silicon Cochlear Electrode Array With Integrated Position Sensors
,”
28th Annual International Conference of the IEEE—Engineering in Medicine and Biology Society
, pp.
3170
3173
.
27.
Cohen
,
L.
,
Xu
,
J.
,
Xu
,
S. A.
, and
Clark
,
G. M.
, 1996, “
Improved and Simplified Methods for Specifying Positions of the Electrode Bands of a Cochlear Implant Array
,”
Am. J. Otol.
,
17
, pp.
859
865
. 0192-9763
28.
Yoo
,
S. K.
,
Wang
,
G.
,
Rubinstein
,
J. T.
,
Skinner
,
M. W.
, and
Vannier
,
M. W.
, 2000, “
Three-Dimensional Modeling and Visualization of the Cochlea on the Internet
,”
IEEE Trans. Inf. Technol. Biomed.
,
4
(
2
), pp.
144
151
. 1089-7771
29.
Ketten
,
D. R.
,
Skinner
,
M. W.
,
Wang
,
G.
,
Vannier
,
M. W.
,
Gates
,
G. A.
, and
Neely
,
J. G.
, 1998, “
In Vivo Measures of Cochlear Length and Insertion Depth of Nucleus Cochlear Implant Electrode Arrays
,”
Ann. Otol. Rhinol. Laryngol.
,
107
(
175
), pp.
1
16
. 0003-4894
30.
Wysocki
,
J.
, 1999, “
Dimensions of the Human Vestibular and Tympanic Scalae
,”
Hear. Res.
,
135
(
1–2
), pp.
39
46
. 0378-5955
31.
Angeles
,
J.
, and
Lopez-Cajun
,
C.
, 1991,
Optimization of Cam Mechanisms
,
Kluwer Academic
,
Dordrecht
.
32.
Graham
,
A.
, 1981,
Kronecker Products and Matrix Calculus With Applications
(
Ellis Horwood Series: Mathematics and Its Applications
),
Ellis Horwood Limited
,
New York
.
33.
Rogers
,
D. F.
, and
Adams
,
A. J.
, 1990,
Elements for Computer Graphics
,
2nd ed.
,
McGraw-Hill
,
New York
.
34.
Todd
,
C. A.
,
Naghdy
,
F.
, and
Svehla
,
M. J.
, 2007, “
Force Application During Cochlear Implant Insertion: An Analysis for Improvement of Surgeon Technique
,”
IEEE Trans. Biomed. Eng.
,
54
(
7
), pp.
1247
1255
. 0018-9294
35.
Juvinall
,
R.
, and
Marshek
,
K.
, 2003,
Fundamentals of Machine Component Design
,
Wiley
,
New York
.
You do not currently have access to this content.