Gait training is a major part of neurological rehabilitation. Robotic gait training systems provide paraplegic patients with consistent, labor-saving, and adjustable physical therapy over traditional manual trainings. However the high cost and social-technical concerns on safe operation currently limit their availability to only a few large rehabilitation institutions. This paper describes the synthesis of a linkage mechanism for gait pattern generation in a sagittal plane. The synthesis of the mechanism starts with the definition of a closed ankle trajectory obtained from normative gait data. The synthesis process we developed includes (1) construction of the desired ankle trajectory, (2) formulation of an objective function to be used for linkage optimization, (3) development of a procedure for transforming an initial guess to a starting set of design variables for optimization, and (4) development of a point-matching process needed for implementation. A set of stature-referenced parameters was successfully produced for a crank-rocker mechanism to generate the desired gait path. A simple linkage mechanism can be used as the pattern generator in a gait training system, and the presented process has been used to synthesize a linkage for a specific gait pattern.

1.
Volpe
,
B. T.
,
Ferraro
,
M.
,
Krebs
,
H. I.
, and
Hogan
,
N.
, 2002, “
Robotics in the Rehabilitation Treatment of Patients With Stroke
,”
Curr. Atheroscler. Rep.
,
4
(
4
), pp.
270
276
. 1523-3804
2.
Agrawal
,
S. K.
, and
Fattah
,
A.
, 2004, “
Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Leg During Motion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
(
2
), pp.
157
165
.
3.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W.
,
Scholz
,
J.
, and
Rudolph
,
K.
, 2006, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Rob. Autom.
,
22
(
6
), pp.
1228
1239
. 1546-1904
4.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
, 2005, “
Design of a Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
, Chicago, IL, June 28–Jul. 1, pp.
496
499
.
5.
Bharadwaj
,
K.
,
Sugar
,
T. G.
,
Koeneman
,
J. B.
, and
Koeneman
,
E. J.
, 2005, “
Design of a Robotic Gait Trainer Using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation
,”
J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
1009
1013
.
6.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 2005, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
. 1065-8483
7.
Cherry
,
M. S.
,
Choi
,
D. J.
,
Deng
,
K. J.
,
Kota
,
S.
, and
Ferris
,
D. P.
, 2006, “
Design and Fabrication of an Elastic Knee Orthosis: Preliminary Results
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, Sept. 10–13, Paper No. DETC2006-99622.
8.
Pratt
,
J. E.
,
Krupp
,
B. T.
, and
Morse
,
C. J.
, 2004, “
The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, pp.
2430
2435
.
9.
Kazerooni
,
H.
, and
Steger
,
R.
, 2006, “
The Berkeley Lower Extremity Exoskeleton
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
1
), pp.
14
25
.
10.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
, 2006, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
1083-4435.
11.
Walsh
,
C. J.
,
Paluska
,
D.
,
Pasch
,
K.
,
Grand
,
W.
,
Valiente
,
A.
, and
Herr
,
H.
, 2006, “
Development of a Lightweight, Underactuated Exoskeleton for Load-Carrying Augmentation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Orlando, FL, May 15–19, pp.
3485
3491
.
12.
Walsh
,
C.
,
Endo
,
K.
, and
Herr
,
H. A.
, 2007, “
Quasi-Passive Leg Exoskeleton for Load Carrying Augmentation
,”
Int. J. Humanoid Robotics
,
4
(
3
), pp.
487
506
, special issue on active exoskeletons.
13.
Kawamoto
,
H.
, and
Sankai
,
Y.
, 2002, “
Power Assist System HAL-3 for Gait Disorder Person
,”
Proceedings of the International Conference Computers for Handicapped Persons
, Linz, Austria, July 15–20, Vol.
2398
, pp.
196
203
.
14.
Hesse
,
S.
,
Bertelt
,
C.
,
Jahnke
,
M. T.
,
Schaffrin
,
A.
,
Malezic
,
M.
, and
Mauritz
,
K. H.
, 1995, “
Treadmill Training With Partial Body Weight Support Compared With Physiotherapy in Nonambulatory Hemiparetic Patients
,”
Stroke
,
26
, pp.
976
981
. 0039-2499
15.
Visintin
,
M.
,
Barbeau
,
H.
,
Korner-Bitensky
,
N.
, and
Mayo
,
N.
, 1998, “
A New Approach to Retrain Gait in Stroke Patients Through Body Weight Support and Treadmill Stimulation
,”
Stroke
,
29
, pp.
1122
1128
. 0039-2499
16.
Field-Fote
,
E. C.
, 2001, “
Combined Use of Body Weight Support, Functional Electric Stimulation, and Treadmill Training to Improve Walking Ability in Individuals With Chronic Incomplete Spinal Cord Injury
,”
Arch. Phys. Med. Rehabil.
,
82
, pp.
818
824
. 0003-9993
17.
Nilsson
,
L.
,
Carlsson
,
J.
,
Danielsson
,
A.
,
Fugl-Meyer
,
A.
,
Hellström
,
K.
,
Kristensen
,
L.
,
Sjölund
,
B.
,
Stibrant Sunnerhagen
,
K.
, and
Grimby
,
G.
, 2001, “
Walking Training of Patients With Hemiparesis at an Early Stage After Stroke: A Comparison of Walking Training on a Treadmill With Body Weight Support and Walking Training on the Ground
,”
Clin. Rehabil.
,
15
, pp.
515
527
. 0269-2155
18.
Joffe
,
D.
,
Watkins
,
M.
,
Steiner
,
L.
, and
Pfeifer
,
B. A.
, 2002, “
Treadmill Ambulation With Partial Body Weight Support for the Treatment of Low Back and Leg Pain
,”
J. Orthop. Sports Phys. Ther.
,
32
, pp.
202
213
. 0190-6011
19.
Hornby
,
T. G.
,
Zemon
,
D. H.
, and
Campbell
,
D.
, 2005, “
Robotic-Assisted, Body-Weight-Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury
,”
Phys. Ther.
,
85
(
1
), pp.
52
66
. 0031-9023
20.
Behrman
,
A.
, and
Harkema
,
S. J.
, 2000, “
Locomotor Training After Human Spinal Cord Injury: A Series of Case Studies
,”
Phys. Ther.
,
80
(
7
), pp.
688
700
. 0031-9023
21.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
, 2000, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
. 0748-7711
22.
Colombo
,
G.
,
Wirz
,
M.
, and
Dietz
,
V.
, 2001, “
Driven Gait Orthosis for Improvement of Locomotor Training in Paraplegic Patients
,”
Spinal Cord
,
39
, pp.
252
255
. 1362-4393
23.
Hesse
,
S.
, and
Uhlenbrock
,
D.
, 2000, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
. 0748-7711
24.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
, 2003, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation
,
6
(
2
), pp.
108
115
. 1094-7159
25.
Schmidt
,
H.
,
Hesse
,
S.
,
Bernhardt
,
R.
, and
Krüger
,
J.
, 2005, “
HapticWalker: A Novel Haptic Foot Device
,”
ACM Trans. Appl. Percept.
,
2
(
2
), pp.
166
180
. 1544-3558
26.
J.
Rose
and
J. G.
Gamble
, eds., 2005,
Human Walking
, 3rd ed.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
.
27.
Ayyappa
,
E.
, 1997, “
Normal Human Locomotion, Part I: Basic Concepts and Terminology
,”
Prosthet. Orthot Int.
0309-3646,
9
(
1
), pp.
10
17
.
28.
Clinical Gait Analysis Normative Gait Database,” available at web site, http://www.univie.ac.at/cga/data/index.htmlhttp://www.univie.ac.at/cga/data/index.html.
29.
Ellis
,
R. E.
, 2000, “
From Scans to Sutures: Robotics Methods for Computer-Enhanced Surgery
,”
Robotics Research: The Ninth International Symposium
, Snowbird, UT, Oct. 9–12, 1999,
J. M.
Hollerbach
and
D. E.
Koditscheck
, eds.,
Springer-Verlag
,
Berlin
, pp.
203
210
.
30.
Ellis
,
R. E.
,
Zion
,
P.
, and
Tso
,
C. Y.
, 1997, “
Interactive Visual and Force Rendering of Human-Knee Dynamics
,”
The Fifth International Symposium on Experimental Robotics
,
Lecture Notes in Control and Information Sciences
, Vol.
232
,
Springer
,
New York
, pp.
173
182
,
31.
Winter
,
D. A.
, 1979,
Biomechanics of Human Movement
,
Wiley
,
New York
, p.
48
.
32.
Blechschmidt
,
J. L.
, and
Uicker
,
J. J.
, 1986, “
Linkage Synthesis Using Algebraic Curves
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
543
548
.
33.
Angeles
,
J.
,
Alivizatos
,
A.
, and
Akhras
,
R.
, 1988, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,”
Mech. Mach. Theory
0094-114X,
23
, pp.
343
353
.
34.
Ullah
,
I.
, and
Kota
,
S.
, 1997, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
504
510
.
35.
Mokhtarian
,
F.
,
Abbasi
,
S.
, and
Kittler
,
J.
, 1996, “
Robust and Effcient Shape Indexing Through Curvature Scale Space
,”
Proceedings of the British Machine Vision Conference
, Edinburgh, UK, Sep. 9–12, pp.
53
62
.
36.
Alt
,
H.
,
Behrends
,
B.
, and
Blomer
,
J.
, 1995, “
Approximate Matching of Polygonal Shapes
,”
Ann. Math. Artif. Intell.
,
13
(
3–4
), pp.
251
265
. 1012-2443
37.
Adamek
,
T.
, and
O’Connor
,
N.
, 2003, “
Efficient Contour-Based Shape Representation and Matching
,”
Proceedings of the Fifth ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR’03)
, Berkeley, CA, Berkeley, CA, Nov. 7, pp.
138
143
.
38.
Hrones
,
J. A.
, and
Nelson
,
G. L.
, 1951,
Analysis of the Four Bar Linkage: Its Application to the Synthesis of Mechanisms
,
MIT
,
New York
/
Wiley
,
New York
.
You do not currently have access to this content.