This paper describes Robopsy, an economical, patient-mounted, telerobotic, needle guidance and insertion system, that enables faster, more accurate targeting during CT-guided biopsies and other percutaneous interventions. The current state of the art imaging technology facilitates precise location of sites within the body; however, there is no mechanical equivalent to then facilitate precise targeting. The lightweight, disposable actuator unit, which affixes directly to the patient, is composed primarily of inexpensive, injection molded, radiolucent, plastic parts that snap together, whereas the four micromotors and control electronics are retained and reused. By attaching to a patient, via an adhesive pad and optional strap points, the device moves passively with patient motion and is thus inherently safe. The device’s mechanism tilts the needle to a two degree-of-freedom compound angle, toward the patient’s head or feet (in and out of the scanner bore) and left or right with respect to the CT slice, via two motor-actuated concentric, crossed, and partially nested hoops. A carriage rides in the hoops and interfaces with the needle via a two degree-of-freedom friction drive that both grips the needle and inserts it. This is accomplished by two rubber rollers, one passive and one driven, that grip the needle via a rack and pinion drive. Gripping is doctor controlled; thus when not actively being manipulated, the needle is released and allowed to oscillate within a defined region so as to minimize tissue laceration due to the patient breathing. Compared to many other small robots intended for medical applications, Robopsy is an order of magnitude less costly and lighter while offering appropriate functionality to improve patient care and procedural efficiency. This demonstrates the feasibility of developing cost-effective disposable medical robots, which could enable their more widespread application.

1.
American Lung Association
, 2006, “
Trends in Lung Cancer Morbidity and Mortality
,” Epidemiology and Statistics Unit.
2.
Henschke
,
C. I.
,
Yankelevitz
,
D. F.
,
Altorki
,
N. K.
,
et al.
, 2006, “
Survival of Patients with Stage I Lung Cancer Detected on CT Screening
,”
N. Engl. J. Med.
0028-4793,
355
(
17
), pp.
1763
1771
.
3.
Ohno
,
Y.
,
Hatabu
,
H.
,
et al.
, 2003, “
CT-Guided Transthoracic Needle Aspiration Biopsy of Small (⇐20mm) Solitary Pulmonary Nodules
,”
AJR, Am. J. Roentgenol.
0361-803X,
180
(
6
), pp.
1665
1669
.
4.
Brabrand
,
K.
,
Aaløkken
,
T. M.
,
Krombach
,
G. A.
,
Günther
,
R. W.
,
Tariq
,
R.
,
Magnusson
,
A.
, and
Lindgren
,
P. G.
, 2004, “
Multicenter Evaluation of a New Laser Guidance System for Computed Tomography Intervention
,”
Acta Radiol.
0284-1851,
45
(
3
), pp.
308
312
.
5.
LAP of America L.C.
, 1755 Avenida del Sol, Boca Raton, FL 33432, http://www.lap-laser.com/http://www.lap-laser.com/
6.
Rasmus
,
M.
,
Dziergwa
,
S.
,
Haas
,
T.
,
Madoerin
,
P.
,
Huegli
,
R.
,
Bilecen
,
D.
, and
Jacob
,
A. L.
, 2007, “
Preliminary Clinical Results with the MRI-Compatible Guiding System INNOMOTION
,”
Int J CARS
,
2
, pp.
S138
S145
.
7.
Stoianovici
,
D.
,
Cleary
,
K.
,
Patriciu
,
A.
,
Mazilu
,
D.
,
Stanimir
,
A.
,
Craciunoiu
,
N.
,
Watson
,
V.
, and
Kavoussi
,
L.
, 2003, “
AcuBot: A Robot for Radiological Interventions
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
5
), pp.
927
930
.
8.
Cleary
,
K.
,
Stoianovici
,
D.
,
Patriciu
,
A.
,
Mazilu
,
D.
,
Lindisch
,
D.
, and
Watson
,
V.
, 2002, “
Robotically Assisted Nerve and Facet Blocks: A Cadaveric Study
,”
Acad. Radiol.
1076-6332,
9
, pp.
821
825
.
9.
Cleary
,
K.
,
Zigmund
,
B.
,
Banovac
,
F.
,
White
,
C.
, and
Stoianovic
,
D.
, 2005, “
Robotically Assisted Lung Biopsy Under CT Fluoroscopy: Lung Cancer Screening and Phantom Study
,”
Computer Assisted Radiology and Surgery: Int. Cong. Series
,
1281
, pp.
740
745
.
10.
Maurin
,
B.
,
Bayle
,
B.
,
Gangloff
,
J.
,
Zanne
,
P.
,
de Mathelin
,
M.
, and
Piccin
,
O.
, 2006, “
A Robotized Positioning Platform Guided by Computed Tomography: Practical Issues and Evaluation
,”
Proceedings of IEEE 2006 International Conference on Robotics and Automation
,
Orlando, Fl
, pp.
251
256
.
11.
Taillant
,
E.
,
Avila-Vilchis
,
J. C.
,
Allegrini
,
I. B.
, and
Cinquin
,
P.
, 2004, “
CT and MR Compatible Light Puncture Robot: Architectural Design and First Experiments
,”
Proceedings of 2004 International Society and Conference Series on Medical Image Computing and Computer-Assisted Intervention
, Vol.
2
, pp.
145
154
.
12.
Muntener
,
M.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Mazilu
,
D.
,
Bagga
,
H.
,
Kavoussi
,
L.
,
Cleary
,
K.
,
Stoianovici
,
D.
, 2006, “
Magnetic Resonance Imaging Compatible Robotic System for Fully Automated Brachytherapy Seed Placement
,”
Urology
0090-4295,
68
(
6
), pp.
1313
1317
.
13.
Patriciu
,
A.
,
Petrisor
,
D.
,
Muntener
,
M.
,
Mazlie
,
D.
,
Schar
,
M.
, and
Stoianovici
,
D.
, 2007, “
Automatic Brachytherapy Seed Placement Under MRI Guidance
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
8
), pp.
1499
1506
.
14.
Barrett
,
J. F.
, and
Keat
,
N.
, 2004, “
Artifacts in CT: Recognition and Avoidance
,”
Radiographics
0271-5333,
24
, pp.
1679
1691
.
15.
Okanura
,
A. M.
,
Simone
,
C.
, and
O’Leary
,
M. D.
, 2004, “
Force Modeling for Needle Insertion into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
51
(
10
), pp.
1707
1716
.
16.
Dien
,
R. Y.
, and
Luce
,
E. C.
, 1986, “
Spherical Robotic Wrist Joint
,” U.S. Patent, 4,628,765,
Rensselaer Polytechnic Institute
.
17.
Stanisic
,
M.
,
Duta
,
O.
, 1990, “
Symetrically Actuated Double Pointing Systems: The Basis of Singularity-Free Robot Wrists
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
5
), pp.
562
569
.
18.
Rosheim
,
M.
, 1989, “
Wrist Tendon Actuator
,” U.S. Patent, 4,804,220.
19.
Boothroyd
,
G.
,
Dewhurst
,
P.
,
Knight
,
W.
, 2002,
Product Design for Manufacture and Assembly
,
2nd ed.
,
Dekker, New York
.
You do not currently have access to this content.