Abstract

Over the last two decades, robot-assisted minimally invasive surgery has become more accessible and has contributed to improved patient outcomes. However, its adoption in resource-constrained environments is limited due to the cost of the consumables, such as surgical instruments and access to sterilization facilities. These surgical instruments often have a tooltip with intricate geometry, making it difficult to sterilize and reuse for multiple surgeries. This research work introduces a novel minimally invasive surgical (MIS) instrument, the CLEANSurgiTip, which features a disposable grasper designed to address biofouling while reducing overall costs through minimized waste. Unlike traditional tendon-driven systems, which suffer from reliability issues and require frequent replacements, the CLEANSurgiTip utilizes rigid shafts to transmit motion to a distal 2 + 1 degrees-of-freedom (DoF) grasper (pitch, yaw, and grasp). These rigid shafts ensure a consistent cross section, simplifying the sealing process against bodily fluids. The transmission mechanism is simplified using an elbow mechanism and flexible shafts in place of conventional gears for orthogonal motion transmission. The flexible shaft aids in decoupling the pitch and the yaw motion. The tooltip design promotes a simplified interface between the disposable grasper and the reusable shaft, facilitating easy detachment. The paper also presents a novel reusable tool shaft to drive the proposed tooltip.

References

1.
Sheetz
,
K. H.
,
Claflin
,
J.
, and
Dimick
,
J. B.
,
2020
, “
Trends in the Adoption of Robotic Surgery for Common Surgical Procedures
,”
JAMA Network Open
,
3
(
1
), p.
e1918911
.10.1001/jamanetworkopen.2019.18911
2.
Stylopoulos
,
N.
, and
Rattner
,
D.
,
2003
, “
Robotics and Ergonomics
,”
Surg. Clin.
,
83
(
6
), pp.
1321
1337
.10.1016/S0039-6109(03)00161-0
3.
Lucas
,
A. D.
,
Nagaraja
,
S.
,
Gordon
,
E. A.
, and
Hitchins
,
V. M.
,
2015
, “
Evaluating Device Design and Cleanability of Orthopedic Device Models Contaminated With a Clinically Relevant Bone Test Soil
,”
Biomed. Instrum. Technol.
,
49
(
5
), pp.
354
362
.10.2345/0899-8205-49.5.354
4.
Deshpande
,
A.
,
Smith
,
G.
, and
Smith
,
A.
,
2015
, “
Biofouling of Surgical Power Tools During Routine Use
,”
J. Hosp. Infect.
,
90
(
3
), pp.
179
185
.10.1016/j.jhin.2015.03.006
5.
Saito
,
Y.
,
Yasuhara
,
H.
,
Murakoshi
,
S.
,
Komatsu
,
T.
,
Fukatsu
,
K.
, and
Uetera
,
Y.
,
2017
, “
Challenging Residual Contamination of Instruments for Robotic Surgery in Japan
,”
Infect. Control Hosp. Epidemiol.
,
38
(
2
), pp.
143
146
.10.1017/ice.2016.249
6.
Van Meer
,
F.
,
Giraud
,
A.
,
Esteve
,
D.
, and
Dollat
,
X.
,
2005
, “
A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, AB, Canada, Aug. 2--6, pp.
919
924
.10.1109/IROS.2005.1545440
7.
Prasai
,
A. B.
,
Jaiprakash
,
A.
,
Pandey
,
A. K.
,
Crawford
,
R.
,
Roberts
,
J.
, and
Wu
,
L.
,
2016
, “
Design and Fabrication of a Disposable Micro End Effector for Concentric Tube Robots
,”
2016 14th International Conference on Control, Automation, Robotics and Vision
(
ICARCV
), Phuket, Thailand, Nov. 13--15, pp.
1
6
.10.1109/ICARCV.2016.7838560
8.
Da Vinci X/Xi, 2023, “
Da Vinci X/Xi System Instrument and Accessory Catalog
,”
accessed Apr. 26, 2025, https://www.intuitive.com/en-us/-/media/ISI/Intuitive/Pdf/xi-x-ina-catalog-no-pricing-us-1052082.pdf
9.
Palep
,
J. H.
,
2009
, “
Robotic Assisted Minimally Invasive Surgery
,”
J. Minimal Access Surg.
,
5
(
1
), pp.
1
7
.10.4103/0972-9941.51313
10.
Cepolina
,
F.
, and
Michelini
,
R.
,
2004
, “
Review of Robotic Fixtures for Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
1
(
1
), pp.
43
63
.10.1002/rcs.5
11.
Iwamori
,
Y.
,
Okamoto
,
J.
, and
Fujie
,
M. G.
,
2007
, “
Multi-DoF Forceps Manipulator for an Approach to the Dorsal Aspect of an Organ
,”
World Congress on Medical Physics and Biomedical Engineering 2006: August 27–September 1, 2006 COEX Seoul, Korea “Imaging the Future Medicine”
,
Springer
, Seoul, South Korea, pp.
4164
4168
.
12.
Minor
,
M.
, and
Mukherjee
,
R.
,
1999
, “
A Dexterous Manipulator for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
, Detroit, MI, May 10--15, pp.
2057
2064
.10.1109/ROBOT.1999.770410
13.
Yamashita
,
H.
,
Kim
,
D.
,
Hata
,
N.
, and
Dohi
,
T.
,
2003
, “
Multi-Slider Linkage Mechanism for Endoscopic Forceps Manipulator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2003
), Vol.
3
, Las Vegas, NV, Oct. 27--31, pp.
2577
2582
.10.1109/IROS.2003.1249258
14.
Hong
,
M. B.
, and
Jo
,
Y.-H.
,
2014
, “
Design of a Novel 4-DoF Wrist-Type Surgical Instrument With Enhanced Rigidity and Dexterity
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
500
511
.10.1109/TMECH.2013.2245143
15.
Wang
,
H.
,
Wang
,
S.
, and
Zuo
,
S.
,
2020
, “
Development of Visible Manipulator With Multi-Gear Array Mechanism for Laparoscopic Surgery
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3090
3097
.10.1109/LRA.2020.2975722
16.
Chavan
,
M.
,
Kumar
,
P.
,
Ghyar
,
R.
,
Ravi
,
B.
, and
Gandhi
,
P.
,
2021
, “
Tendon-Driven Detachable End-Effector Mechanism for Minimally Invasive Surgery (MIS) Instruments
,” Design for Tomorrow—Volume 3: Proceedings of ICoRD 2021,
Springer
, Mumbai, India, pp.
619
628
.
17.
Nelson
,
N.
, and
Nelson
,
C. A.
,
2018
, “
Design of a Modular, Partially Disposable Robot for Minimally Invasive Surgery
,”
ASME
Paper No. DMD2018-6821.10.1115/DMD2018-6821
18.
Nelson
,
C. A.
, and
Nelson
,
N.
,
2020
, “
Modular Cable Driven Surgical Robots
,”
U.S. Patent 2020/0093553 A1
, Mar. 26.https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1647&context=mechengfacpub
19.
Dai
,
Z.
,
Wu
,
Z.
,
Zhao
,
J.
, and
Xu
,
K.
,
2019
, “
A Robotic Laparoscopic Tool With Enhanced Capabilities and Modular Actuation
,”
Sci. China Technol. Sci.
,
62
(
1
), pp.
47
59
.10.1007/s11431-018-9348-9
20.
Scott
,
M.
,
2016
, “
Wristed Robotic Tool With Replaceable End-Effector Cartridges
,” U.S. Patent No. 9,358,031, June 7.
21.
Thielmann
,
S.
,
Seibold
,
U.
,
Haslinger
,
R.
,
Passig
,
G.
,
Bahls
,
T.
,
Jörg
,
S.
,
Nickl
,
M.
,
Nothhelfer
,
A.
,
Hagn
,
U.
, and
Hirzinger
,
G.
,
2010
, “
MICA—A New Generation of Versatile Instruments in Robotic Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18--22, pp.
871
878
.10.1109/IROS.2010.5649984
22.
Seibold
,
U.
, and
Thielmann
,
S.
,
2015
, “
Surgical Manipulation Instrument
,” U.S. Patent No. 8,945,098, Feb. 3.
23.
Colan
,
J.
,
Davila
,
A.
,
Zhu
,
Y.
,
Aoyama
,
T.
, and
Hasegawa
,
Y.
,
2023
, “
OpenRST: An Open Platform for Customizable 3D Printed Cable-Driven Robotic Surgical Tools
,”
IEEE Access
,
11
, pp.
6092
6105
.10.1109/ACCESS.2023.3236821
24.
Wang
,
H.
, and
Zuo
,
S.
,
2021
, “
Laparoscopic Surgical Device With Modular End Tools for Real-Time Endomicroscopy and Therapy
,”
Med. Biol. Eng. Comput.
,
59
(
4
), pp.
787
797
.10.1007/s11517-021-02341-x
25.
Chandrasekaran
,
K.
,
Sathuluri
,
A.
, and
Thondiyath
,
A.
,
2017
, “
MagNex—Expendable Robotic Surgical Tooltip
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29--June 3, pp.
4221
4226
.10.1109/ICRA.2017.7989486
26.
Golahmadi
,
A. K.
,
Khan
,
D. Z.
,
Mylonas
,
G. P.
, and
Marcus
,
H. J.
,
2021
, “
Tool-Tissue Forces in Surgery: A Systematic Review
,”
Ann. Med. Surg.
,
65
, p.
102268
.10.1016/j.amsu.2021.102268
27.
Harris
,
J.
, and
Slay
,
W.
,
1965
, “
You Can Make This Incredible Elbow Engine
,”
Popular Mechanics
,
Hearst Corporation
,
NY
, pp.
166
169
.
You do not currently have access to this content.