Graphical Abstract Figure

6D-PKM based master-slave manipulation for neurosurgical procedures.

Graphical Abstract Figure

6D-PKM based master-slave manipulation for neurosurgical procedures.

Close modal

Abstract

Telemanipulation in neuroregistration and neurosurgery can enhance the precision in surgical services and sterility of the operation theater. Accurate neuroregistration is crucial for high-precision neurosurgery. The aim is to validate telemanipulation-based neuroregistration and neuronavigation for their registration accuracy (0.34 mm) and effectiveness in robot-assisted neurosurgery. A 6 degree-of-freedom parallel kinematic mechanism (6D-PKM) based surgical robot is operated in telemanipulation mode to conduct neuroregistration and neurosurgical procedure. Phantoms affixed with markers were prepared to study varied cases. These phantoms were precisely registered in a telemanipulation mode as per the patient planning sequence. After the registration process, the coordinates of target points in real patient space were computed. The trajectory of navigation matches the path quite closely from entry to target point in real patient space, corresponding to the medical image space. Common and various cases representing highly unique and unusual postures are considered for registration. The registration is validated by considering surface and deep-rooted target points for surgical procedures. Further cases involving variation in entry hole size, depth, and target size are considered. All the case studies were conducted on transparent glass phantoms to visualize and monitor a telemanipulation-based neuroregistration and intercranial neurosurgical procedure. The phantoms were successfully registered with a maximum mean registration error of 0.34 mm and standard deviation of 0.08 mm. The registration accuracy was validated by the robot's capability to insert a surgical needle (2 mm diameter) into a target holes of 4 mm maximum diameter, ensuring a radial clearance less than 1 mm. The real space target error of 1 mm represents accurate registration. These glass phantoms' case studies demonstrate improved reliability in accuracy, repeatability, and time efficiency. These studies validate the feasibility of high-precision 6D-PKM robot-assisted telemanipulation-based neuroregistration and neuronavigation in neurosurgery.

References

1.
Liss
,
M. A.
, and
McDougall
,
E. M.
,
2013
, “
Robotic Surgical Simulation
,”
Cancer J.
,
19
(
2
), pp.
124
129
.10.1097/PPO.0b013e3182885d79
2.
Bernardo
,
A.
,
2017
, “
Virtual Reality and Simulation in Neurosurgical Training
,”
World Neurosurg.
,
106
, pp.
1015
1029
.10.1016/j.wneu.2017.06.140
3.
Cobb
,
M. I. P. H.
,
Taekman
,
J. M.
,
Zomorodi
,
A. R.
,
Gonzalez
,
L. F.
, and
Turner
,
D. A.
,
2016
, “
Simulation in Neurosurgery—A Brief Review and Commentary
,”
World Neurosurg.
,
89
, pp.
583
586
.10.1016/j.wneu.2015.11.068
4.
Robison
,
R. A.
,
Liu
,
C. Y.
, and
Apuzzo
,
M. L. J.
,
2011
, “
Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery
,”
World Neurosurg.
,
76
(
5
), pp.
419
430
.10.1016/j.wneu.2011.07.008
5.
Kaushik
,
A.
,
Dwarakanath
,
T. A.
,
Bhutani
,
G.
, and
Srinivas
,
D.
,
2020
, “
Robot-Based Autonomous Neuroregistration and Neuronavigation: Implementation and Case Studies
,”
World Neurosurg.
,
134
, pp.
e256
e271
.10.1016/j.wneu.2019.10.041
6.
Haidegger
,
T.
,
Xia
,
T.
, and
Kazanzides
,
P.
,
2008
, “
Accuracy Improvement of a Neurosurgical Robot System
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob 2008
), Scottsdale, AZ, Oct. 19--22, pp.
836
841
.10.1109/BIOROB.2008.4762912
7.
Carlton
,
K.
,
2018
, “
They Did Surgery on a Grape, and We Did a Q&A With a Surgeon About It
,” University of Chicago Medicine, Chicago, IL, accessed Oct. 15, 2023, https://www.uchicagomedicine.org/forefront/surgery-articles/2018/november/they-did-surgery-on-a-grape-and-we-did-a-q-and-a-with-a-surgeon-about-it
8.
Mulcahy
,
C.
,
2019
, “
Robotic Pumpkin Surgery
,” WCNC Charlotte, NC, accessed Oct. 15, 2023, https://www.youtube.com/watch?v=mjbgd8U5Bec
9.
Kaushik
,
A.
,
Dwarakanath
,
T. A.
,
Bhutani
,
G.
,
Moiyadi
,
A.
, and
Chaudhari
,
P.
,
2020
, “
Validation of High Precision Robot-Assisted Methods for Intracranial Applications: Preliminary Study
,”
World Neurosurg.
,
137
, pp.
71
77
.10.1016/j.wneu.2020.01.206
10.
Ramrath
,
L.
,
Vogt
,
S.
,
Jensen
,
W.
,
Hofmann
,
U. G.
, and
Schweikard
,
A.
,
2009
, “
Computer- and Robot-Assisted Stereotaxy for High-Precision Small Animal Brain Exploration
,”
Biomed. Tech. (Berlin)
,
54
(
1
), pp.
8
13
.10.1515/BMT.2009.002
11.
Kumar
,
R.
,
Dwarakanath
,
T. A.
,
Bhutani
,
G.
, and
Sinha
,
S. K.
,
2025
, “
Tele-Manipulative Neuro-Registration in Robot-Assisted Neurosurgery
,”
World Neurosurgery
,
195
, p.
123658
10.1016/j.wneu.2025.123658
12.
Medtronic
,
2017
, “
StealthStation™ S8 Surgical Navigation System
,” Medtronic, MN, accessed Feb. 10, 2025, https://europe.medtronic.com/xd-en/healthcare-professionals/products/neurological/surgical-navigation-systems/stealthstation/cranial-neurosurgery-navigation.html
13.
Cardinale
,
F.
,
Rizzi
,
M.
,
d'Orio
,
P.
,
Casaceli
,
G.
,
Arnulfo
,
G.
,
Narizzano
,
M.
,
Scorza
,
D.
, et al.,
2017
, “
A New Tool for Touch-Free Patient Registration for Robot-Assisted Intracranial Surgery: Application Accuracy From a Phantom Study and a Retrospective Surgical Series
,”
Neurosurg. Focus FOC
,
42
(
5
), p.
E8
.10.3171/2017.2.FOCUS16539
14.
Zimmer Biomet
,
2022
, “
ROSA ONE Brain Application Brochure
,” Zimmer Biomet, Warsaw, IN, accessed Feb. 10, 2025, https://www.zimmerbiomet.com/content/dam/zb-corporate/en/products/smart-orthopedics/robotics/rosa-one-brain/ROSA-One-Brain-Application-Brochure-REV-1.pdf
15.
Brainlab
,
2022
, “
Brainlab Robotic Suite: Accuracy in Every Step
,” Brainlab AG, Munich, Germany, accessed Feb. 10, 2025, https://www.brainlab.com/surgery-products/overview-platform-products/robotic-suite/
16.
Clancy
,
M.
,
Alruwaili
,
F.
,
Saeedi-Hosseiny
,
M. S.
,
McMillan
,
S.
,
Iordachita
,
I. I.
, and
Abedin-Nasab
,
M. H.
,
2024
, “
Analysis and Optimization of a 6-DoF 3-RRPS Parallel Mechanism for Robot-Assisted Long-Bone Fracture Surgery
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061006
.10.1115/1.4063167
17.
Pisla
,
D.
,
Hajjar
,
N. A.
,
Gherman
,
B.
,
Radu
,
C.
,
Antal
,
T.
,
Tucan
,
P.
,
Literat
,
R.
, and
Vaida
,
C.
,
2023
, “
Development of a 6-DOF Parallel Robot for Potential Single-Incision Laparoscopic Surgery Application
,”
Machines
,
11
(
10
), p.
978
.10.3390/machines11100978
18.
Musa
,
M.
,
Sengupta
,
S.
, and
Chen
,
Y.
,
2022
, “
Design of a 6-DoF Parallel Robotic Platform for MRI Applications
,”
J. Med. Rob. Res.
,
7
(
2–3
), p.
2241005
.10.1142/S2424905X22410057
19.
Wang
,
J.
,
Xiang
,
R.
,
Xiang
,
J.
,
Wang
,
B.
,
Wu
,
X.
,
Cai
,
M.
,
Pan
,
Z.
,
Li
,
M.
, and
Li
,
X.
,
2024
, “
Modeling, Analysis and Evaluation of a Novel Compact 6-DoF 3-RRRS Needle Biopsy Robot
,”
Mathematics
,
12
(
10
), p.
1461
.10.3390/math12101461
20.
Zheng
,
H.
,
Liang
,
C.
,
Gao
,
F.
,
Qi
,
C.
,
He
,
B.
,
Liu
,
R.
, and
Chen
,
L.
,
2024
, “
Design of a Novel Macro-Micro Integrated Brain Surgery Robot Based on Modular Parallel Mechanisms
,”
Chin. J. Mech. Eng.
,
37
(
1
), p.
130
.10.1186/s10033-024-01076-8
21.
West
,
J. B.
,
Fitzpatrick
,
J. M.
,
Toms
,
S. A.
,
Maurer
,
C. R.
, and
Maciunas
,
R. J.
,
2001
, “
Fiducial Point Placement and the Accuracy of Point-Based, Rigid Body Registration
,”
Neurosurgery
,
48
(
4
), pp.
810
817
.10.1097/00006123-200104000-00023
22.
Kaushik
,
A.
,
Dwarakanath
,
T. A.
,
Bhutani
,
G.
,
Venkata
,
P. P. K.
, and
Moiyadi
,
A.
,
2019
, “
Image-Based Data Preparation for Robot-Based Neurosurgery
,”
Machines, Mechanism and Robotics
,
D. N.
Badodkar
and
T. A.
Dwarakanath
, eds.,
Springer Singapore
,
Singapore
, pp.
27
38
.
23.
Bhutani
,
G.
,
2015
, “
Modeling Design and Development of Frameless Stereotaxy in Robot Assisted Neurosurgery
,” Ph.D. thesis, Homi Bhabha National Institute, Mumbai, India.
24.
Kumar
,
R.
,
Dwarakanath
,
T. A.
,
Bhutani
,
G.
, and
Sinha
,
S. K.
,
2024
, “
Novel and Robust Forward Kinematic Algorithm for Real-Time Control of General Six-Degree-of-Freedom Parallel Robot for Tele-Manipulation and Tele-Navigation
,”
ASME J. Mech. Rob.
,
16
(
10
), p.
101005
.10.1115/1.4064485
25.
Kumar
,
R.
,
Sinha
,
S. K.
,
Dwarakanath
,
T. A.
, and
Bhutani
,
G.
,
2022
, “
Parallel Mechanism-Based Master–Slave Manipulation
,”
Machines, Mechanism and Robotics
(Lecture Notes in Mechanical Engineering),
R.
Kumar
,
V. S.
Chauhan
,
M.
Talha
, and
H.
Pathak
, eds.,
Springer
,
Singapore
.
26.
Fontaine
,
D.
,
Almairac
,
F.
,
Chiapello
,
B.
, and
Leplus
,
A.
,
2023
, “
Application Accuracy of Neuromate Robot-Guided Deep Brain Stimulation Procedures Using the Non-Invasive Frameless Neurolocate Registration System
,”
Int. J. Med. Rob.
,
13
, p.
e2610
.10.1002/rcs.2610
27.
Sickler
,
R. W.
,
Chandran
,
A. S.
,
Funke
,
M. E.
,
Mosher
,
J. C.
,
Kommuru
,
I. M.
,
Lankford
,
J.
,
Varnado
,
S. S.
, et al.,
2024
, “
Comparison of 2 Robotic Systems for Pediatric Stereo Electroencephalography Implantation
,”
World Neurosurg.
,
182
, pp.
e486
e492
.10.1016/j.wneu.2023.11.125
28.
Liu
,
L.
,
Mariani
,
S. G.
,
De Schlichting
,
E.
,
Grand
,
S.
,
Lefranc
,
M.
,
Seigneuret
,
E.
, and
Chabardès
,
S.
,
2020
, “
Frameless ROSA® Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy
,”
Oper. Neurosurg. (Hagerstown)
,
19
(
1
), pp.
57
64
.10.1093/ons/opz320
29.
Zimmer Biomet Robotics
,
2018
, “
ROSA One Brain Application Performance Bench Testing, 510(K) Premarket Notification, K182417
,” Zimmer Biomet Robotics, Montpellier, France, accessed Dec. 18, 2024, https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182417.pdf
You do not currently have access to this content.