Graphical Abstract Figure

PSO-optimized random forest model for noninvasive blood glucose estimation using PPG signals, with wavelet transform and median filtering for signal enhancement.

Graphical Abstract Figure

PSO-optimized random forest model for noninvasive blood glucose estimation using PPG signals, with wavelet transform and median filtering for signal enhancement.

Close modal

Abstract

The increasing prevalence of diabetes highlights the need for accurate, efficient, and noninvasive blood glucose monitoring. Conventional methods are often invasive, costly, and carry a risk of infection. To address these limitations, this study presents a noninvasive blood glucose detection system that integrates photoplethysmography (PPG) with advanced signal processing and machine learning techniques. Wavelet transform was employed for denoising, while median filtering corrected baseline drift, jointly enhancing the stability and quality of the PPG signal. A random forest regression (RFR) model optimized using particle swarm optimization (PSO) was developed to improve the accuracy and robustness of glucose level predictions. The wavelet-based denoising process effectively stabilized signal amplitude within the range of 0.3 V to 1.3 V. The PSO-optimized RFR model demonstrated strong predictive performance, achieving a coefficient of determination (CD) of 0.889, with corresponding mean absolute error (MAE) of 0.21 mmol/L, mean squared error (MSE) of 0.12 mmol/L, and root mean squared error (RMSE) of 0.33 mmol/L. These results confirm the model's reliability and precision. By combining PPG with a PSO-enhanced machine learning model, this study offers a promising approach to noninvasive glucose monitoring and lays a strong foundation for future health monitoring technologies and early clinical interventions.

References

1.
Edwards
,
K.
,
Li
,
X.
, and
Lingvay
,
I.
,
2023
, “
Clinical and Safety Outcomes With GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 1 Diabetes: A Real-World Study
,”
J. Clin. Endocrinol. Metab.
,
108
(
4
), pp.
920
930
.10.1210/clinem/dgac618
2.
Kisigo
,
G. A.
, and
Peck
,
R. N.
,
2023
, “
Integrating HIV, Hypertension, and Diabetes Primary Care in Africa
,”
Lancet
,
402
(
10409
), pp.
1211
1213
.10.1016/S0140-6736(23)01884-6
3.
Dong
,
K.
,
Chu
,
Y.
,
Tian
,
X.
,
Fang
,
T.
,
Ye
,
X.
,
Wang
,
X.
, and
Tang
,
F.
,
2023
, “
Wearable Photoelectric Fingertip Force Sensing System Based on Blood Volume Changes Without Sensory Interference
,”
ACS Appl. Mater. Interfaces
,
15
(
29
), pp.
34578
34587
.10.1021/acsami.3c06469
4.
Kumar
,
S.
,
Yadav
,
S.
, and
Kumar
,
A.
,
2023
, “
Accuracy of Oscillometric-Based Blood Pressure Monitoring Devices: Impact of Pulse Volume, Arrhythmia, and Respiratory Artifact
,”
J. Hum. Hypertens.
,
38
(
1
), pp.
45
51
.10.1038/s41371-023-00856-4
5.
Loosen
,
G.
,
Conrad
,
A. M.
,
Essert
,
N.
,
Boesing
,
C.
,
Hagmann
,
M.
,
Thiel
,
M.
,
Luecke
,
T.
,
Rocco
,
P. R. M.
,
Pelosi
,
P.
, and
Krebs
,
J.
,
2024
, “
Preload Responsiveness in Patients With Acute Respiratory Distress Syndrome Managed With Extracorporeal Membrane Oxygenation
,”
ASAIO J.
,
70
(
1
), pp.
53
61
.10.1097/MAT.0000000000002054
6.
Tseng
,
Y.-W.
,
Jiang
,
J.-W. F.
,
Hwang
,
W.-L.
, and
Er
,
T.-K.
,
2023
, “
Interference of Blood Glucose Testing by an Increase in Serum IgM Levels
,”
Clin. Lab.
,
69
(
2
), pp.
123
130
.10.7754/Clin.Lab.2022.220616
7.
Ng'ang'a
,
L.
,
Ngoga
,
G.
,
Dusabeyezu
,
S.
,
Hedt-Gauthier
,
B. L.
,
Harerimana
,
E.
,
Niyonsenga
,
S. P.
,
Bavuma
,
C. M.
, et al.,
2022
, “
Feasibility and Effectiveness of Self-Monitoring of Blood Glucose Among Insulin-Dependent Patients With Type 2 Diabetes: Open Randomized Control Trial in Three Rural Districts in Rwanda
,”
BMC Endocr. Disord.
,
22
(
1
), p.
244
.10.1186/s12902-022-01162-9
8.
Klarskov
,
C. K.
,
Windum
,
N. A.
,
Olsen
,
M. T.
,
Dungu
,
A. M.
,
Jensen
,
A. K.
,
Lindegaard
,
B.
,
Pedersen-Bjergaard
,
U.
, and
Kristensen
,
P. L.
,
2022
, “
Telemetric Continuous Glucose Monitoring During the COVID-19 Pandemic in Isolated Hospitalized Patients in Denmark: A Randomized Controlled Exploratory Trial
,”
Diabetes Technol. Ther.
,
24
(
2
), pp.
102
112
.10.1089/dia.2021.0291
9.
Park
,
G.
,
Lee
,
H.
,
Lee
,
Y.
,
Kim
,
M. S.
,
Jung
,
S.
,
Khang
,
A. R.
, and
Yi
,
D.
,
2024
, “
Automated Personalized Self-Care Program for Patients With Type 2 Diabetes Mellitus: A Pilot Trial
,”
Asian Nurs. Res.
,
18
(
2
), pp.
114
124
.10.1016/j.anr.2024.04.003
10.
Yadav
,
J.
,
Rani
,
A.
,
Singh
,
V.
, and
Mohan Murari
,
B.
,
2017
, “
Investigations on Multisensor-Based Noninvasive Blood Glucose Measurement System
,”
ASME J. Med. Devices
,
11
(
3
), p.
031006
.10.1115/1.4036580
11.
Iqbal
,
T.
,
Elahi
,
A.
,
Ganly
,
S.
,
Wijns
,
W.
, and
Shahzad
,
A.
,
2022
, “
Photoplethysmography-Based Respiratory Rate Estimation Algorithm for Health Monitoring Applications
,”
J. Med. Biol. Eng.
,
42
(
2
), pp.
242
252
.10.1007/s40846-022-00700-z
12.
Aydemir
,
T.
,
Şahin
,
M.
, and
Aydemir
,
O.
,
2020
, “
A New Method for Activity Monitoring Using Photoplethysmography Signals Recorded by Wireless Sensor
,”
J. Med. Biol. Eng.
,
40
(
6
), pp.
934
942
.10.1007/s40846-020-00573-0
13.
Prasun
,
P.
,
Mukhopadhyay
,
S.
, and
Gupta
,
R.
,
2022
, “
Real-Time Multi-Class Signal Quality Assessment of Photoplethysmography Using Machine Learning Technique
,”
Meas. Sci. Technol.
,
33
(
1
), p.
015701
.10.1088/1361-6501/ac2d5b
14.
Mukherjee
,
N.
,
Mukhopadhyay
,
S.
, and
Gupta
,
R.
,
2022
, “
Real-Time Mental Stress Detection Technique Using Neural Networks Towards a Wearable Health Monitor
,”
Meas. Sci. Technol.
,
33
(
4
), p.
044003
.10.1088/1361-6501/ac3aae
15.
Zhao
,
J.
,
Chen
,
X.
,
Zhang
,
X.
, and
Chen
,
X.
,
2022
, “
A Solution for Co-Frequency and Low SNR Problems in Heart Rate Estimation Based on Photoplethysmography Signals
,”
Med. Biol. Eng. Comput.
,
60
(
12
), pp.
3419
3433
.10.1007/s11517-022-02678-x
16.
Chakraborty
,
P.
, and
Tharini
,
C.
,
2024
, “
Non-Invasive Cuff Free Blood Pressure and Heart Rate Measurement From Photoplethysmography (PPG) Signal Using Machine Learning
,”
Wireless Pers. Commun.
,
134
(
4
), pp.
2485
2497
.10.1007/s11277-024-11070-x
17.
Wei
,
Y.
,
Liu
,
J.
,
Hu
,
L.
,
Ling
,
B. W.-K.
, and
Liu
,
Q.
,
2023
, “
Time Frequency Analysis-Based Averaging and Fusion of Features for Wearable Non-Invasive Blood Glucose Estimation
,”
IEEE Trans. Consum. Electron.
,
69
(
3
), pp.
510
521
.10.1109/TCE.2023.3278540
18.
Sindorf
,
J.
, and
Redkar
,
S.
,
2024
, “
PBVI for Optimal Photoplethysmography Noise Filter Selection Using Human Activity Recognition Observations for Improved Heart Rate Estimation on Multi-Sensor Systems
,”
ASME J. Med. Devices
,
18
(
1
), pp.
1
24
.10.1115/1.4065219
19.
Asadi
,
R.
,
Niknam
,
S. A.
,
Anahid
,
M. J.
, and
Ituarte
,
I. F.
,
2023
, “
The Use of Wavelet Transform to Evaluate the Sensitivity of Acoustic Emission Signals at Tributes to Variation of Cutting Parameters in Milling Aluminum Alloys
,”
Int. J. Adv. Manuf. Technol.
,
126
(
7–8
), pp.
3039
3052
.10.1007/s00170-023-11305-4
20.
Prabhu
,
H.
,
Sane
,
A.
,
Dhadwal
,
R.
,
Parlikkad
,
N. R.
, and
Valadi
,
J. K.
,
2023
, “
Interpretation of Drop Size Predictions From a Random Forest Model Using Local Interpretable Model-Agnostic Explanations (LIME) in a Rotating Disc Contactor
,”
Ind. Eng. Chem. Res.
,
62
(
45
), pp.
19019
19034
.10.1021/acs.iecr.3c00808
21.
Aranda-Michel
,
E.
,
Sultan
,
I.
,
Kilic
,
A.
,
Bianco
,
V.
,
Brown
,
J. A.
, and
Serna Gallegos
,
D.
,
2022
, “
A Machine Learning Approach to Model for End-Stage Liver Disease Score in Cardiac Surgery
,”
J. Card. Surg.
,
37
(
1
), pp.
29
38
.10.1111/jocs.16076
22.
Ho
,
L. S.
, and
Tran
,
V. Q.
,
2024
, “
Evaluation and Estimation of Compressive Strength of Concrete Masonry Prism Using Gradient Boosting Algorithm
,”
PLoS One
,
19
(
3
), p.
e0297364
.10.1371/journal.pone.0297364
23.
Bai
,
J.
,
Lan
,
L.
,
Song
,
Z.
, and
Du
,
H.
,
2023
, “
Signal Detection for OTFS System Based on Improved Particle Swarm Optimization
,”
IEICE Trans. Commun.
,
106
(
8
), pp.
614
621
.10.1587/transcom.2022EBP3140
24.
Krishnaswamy
,
A.
, and
Baranoski
,
G. V.
,
2004
, “
A Biophysically-Based Spectral Model of Light Interaction With Human Skin
,”
Comput. Graphics Forum
,
23
(
3
), pp.
331
340
.10.1111/j.1467-8659.2004.00764.x
25.
Senay
,
L. C.
, Jr.,
Prokop
,
L. D.
,
Cronau
,
L.
, and
Hertzman
,
A. B.
,
1963
, “
Relation of Local Skin Temperature and Local Sweating to Cutaneous Blood Flow
,”
J. Appl. Physiol.
,
18
(
4
), pp.
781
785
.10.1152/jappl.1963.18.4.781
26.
Fallow
,
B. A.
,
Tarumi
,
T.
, and
Tanaka
,
H.
,
2013
, “
Influence of Skin Type and Wavelength on Light Wave Reflectance
,”
J. Clin. Monit. Comput.
,
27
(
3
), pp.
313
317
.10.1007/s10877-013-9436-7
27.
Shelley
,
K. H.
,
2007
, “
Photoplethysmography: Beyond the Calculation of Arterial Oxygen Saturation and Heart Rate
,”
Anesth. Analg.
,
105
(
6
), pp.
S31
S36
.10.1213/01.ane.0000269512.82836.c9
You do not currently have access to this content.