Graphical Abstract Figure

The snake-bone in a rigid state provides support for instruments manipulation.

Graphical Abstract Figure

The snake-bone in a rigid state provides support for instruments manipulation.

Close modal

Abstract

In robot-assisted endoscopic procedure, snake-bone located at distal part of the endoscope is required to flexibly bend for adjusting tip position and passing through the body's winding anatomical pathways. After reaching the target lesion, it should serve as a stable platform to support precise operations. Therefore, it is necessary to develop a snake-bone with both bending and stiffness adjustment capabilities. To address these challenges, this paper proposes a novel snake-bone based on a bioinspired honeycomb pattern and the thermoplastic polymer polycaprolactone (PCL), which achieves structure-function integration. Compared with conventional endoscopic snake-bones, our snake-bone in a rigid state has a greater loading capacity, withstanding a torque of 293 Nmm while providing a maximum bending stiffness of 97,297 Nmm2. In a flexible state, the snake-bone exhibits an excellent 2 degrees-of-freedom (DOF) bending motion performance, with a maximum bending angle of 90 deg. This snake-bone can switch states within 18.37 s (from rigid state to flexible state) and 18.65 s (from flexible state to rigid state). Different from other material-based variable-stiffness snake-bones, our snake-bone incorporates an active cooling mechanism. Moreover, compared with other variable-stiffness snake-bones, our snake-bone can achieve variable stiffness while maintaining a reasonable outer diameter. Through phantom experiments, the snake-bone can support surgical instruments in performing endoscopic tasks, facilitating stable operations. The experimental results have proven the feasibility of the snake-bone, highlighting its significant potential for application in endoscopic procedures.

References

1.
Dupont
,
P. E
,
Nelson
,
B. J.
,
Goldfarb
,
M.
,
Hannaford
,
B.
,
Menciassi
,
A.
,
O'Malley
,
M. K.
,
Simaan
,
N.
,
Valdastri
,
P.
, and
Yang
,
G. Z.
,
2021
, “
A decade retrospective of medical robotics research from 2010 to 2020
,”
Sci. Robot.
,
6
(
60
), p.
8017
.10.1126/scirobotics.abi8017
2.
Liu
,
B.
,
Zhang
,
A. Y.
,
Liu
,
J.
,
Han
,
Z. M.
, and
Xie
,
T. Y.
,
2018
, “
Design and Evaluation of a Novel Rotatable One-Element Snake Bone for NOTES
,”
ASME J. Med. Devices
,
12
(
2
), p.
021006
.10.1115/1.4039592
3.
Liang
,
T.
,
Zhang
,
C.
,
Wang
,
Y.
Kong
,
K
,
Chen
,
X
,
Wei
,
B
,
Wang
,
S
, and
Zuo
,
S.
,
2024
, “
A Novel Miniature Flexible Robotic System for Endoscopic Mucosal Dissection: An Animal Experimental Study
,”
J. Robot. Surg.
,
18
, p.
17
.10.1007/s11701-023-01793-7
4.
Azeem
,
N.
,
Tabibian
,
J. H.
,
Baron
,
T. H.
,
Orhurhu
,
V.
,
Rosen
,
C. B.
,
Petersen
,
B. T.
,
Gostout
,
C. J.
,
Topazian
,
M. D.
, and
Levy
,
M. J.
,
2013
, “
Use of a Single-Balloon Enteroscope Compared With Variable-Stiffness Colonoscopes for Endoscopic Retrograde Cholangiography in Liver Transplant Patients With Roux-en-Y Biliary Anastomosis
,”
Gastrointest. Endosc.
,
77
(
4
), pp.
568
577
.10.1016/j.gie.2012.11.031
5.
Chen
,
X. Y.
,
Lai
,
W.
,
Xiong
,
X.
,
Wang
,
X.
,
Wang
,
S. M.
,
Li
,
P.
,
Han
,
W.
, et al.,
2025
, “
Robotic Bronchoscopy System With Variable-Stiffness Catheter for Pulmonary Lesion Biopsy
,”
IEEE Trans. Med. Robot. Bionics
,
7
(
1
), pp.
416
427
.10.1109/TMRB.2025.3527655
6.
Chen
,
B. J.
,
Li
,
L. D.
, and
Zuo
,
S. Y.
,
2025
, “
A Novel Cable-Driven Variable-Stiffness Manipulator With Teeth-Engagement Structure for Transoral Surgery
,”
IEEE Robot. Autom. Lett.
,
10
(
6
), pp.
5241
5248
.10.1109/LRA.2025.3558452
7.
Gifari
,
M. W.
,
Naghibi
,
H.
,
Stramigioli
,
S.
, and
Abayazid
,
M.
,
2019
, “
A Review on Recent Advances in Soft Surgical Robots for Endoscopic Applications
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
5
(
15
), p.
e2010
.10.1002/rcs.2010
8.
Wang
,
Y. J.
,
Hu
,
X. B.
,
Cui
,
L. H.
,
Xiao
,
X.
,
Yang
,
K. J.
,
Zhu
,
Y. J.
, and
Jin
,
H. R.
,
2024
, “
Bioinspired Handheld Time-Share Driven Robot With Expandable DoFs
,”
Nat. Commun.
,
15
(
1
), pp.
1
10
.10.1038/s41467-024-44993-x
9.
Loeve
,
A.
,
Breedveld
,
P.
, and
Dankelman
,
J.
,
2010
, “
Scopes Too Flexible…and Too Stiff
,”
IEEE Pulse
,
1
(
3
), pp.
26
41
.10.1109/MPUL.2010.939176
10.
Hwang
,
M. H.
, and
Kwon
,
D. S.
,
2019
, “
Strong Continuum Manipulator for Flexible Endoscopic Surgery
,”
IEEE-ASME Trans. Mechatron.
,
24
(
5
), pp.
2193
2203
.10.1109/TMECH.2019.2932378
11.
Zappetti
,
D.
,
Arandes
,
R.
,
Ajanic
,
E.
, and
Floreano
,
D.
,
2020
, “
Variable-Stiffness Tensegrity Spine
,”
Smart Mater. Struct.
,
29
(
7
), p.
075013
.10.1088/1361-665X/ab87e0
12.
Liang
,
T
,
Kong
,
K.
, and
Wang
,
S.
,
2023
, “
A Variable Stiffness Manipulator With Multifunctional Channels for Endoscopic Submucosal Dissection
,”
Int. J. Comput. Assisted Radiol. Surg.
,
18
(
10
), pp.
1795
1810
.10.1007/s11548-023-02875-5
13.
Li
,
Y. T
,
Chen
,
Y. H.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Robot.
,
33
(
2
), pp.
446
455
.10.1109/TRO.2016.2636899
14.
Ma
,
J. L
,
Chen
,
D. S
,
Liu
,
Z.
,
Li
,
J. L.
,
Zeng
,
Z. H.
,
Yin
,
Y. T.
,
Zhang
,
X. L.
, and
Shu
,
C.
,
2024
, “
Muscle-Inspired Stiffness-Tunable Flexible Fiber Jamming Structure for Wearable Robots
,”
Smart Mater. Struct.
,
33
(
5
), p.
055002
.10.1088/1361-665X/ad37b5
15.
Sun
,
Y.
, and
Yang
,
Y.
,
2024
, “
Parameter Characterization of Variable Bending Stiffness Module With Electrostatic Layer Jamming Based on Giant Electrorheological Fluid
,”
Smart Mater. Struct.
,
33
(
6
), p.
065032
.10.1088/1361-665X/ad49ee
16.
Sun
,
T.
,
Chen
,
Y. L.
,
Han
,
T. Y.
,
Jiao
,
C. L.
,
Lian
,
B. B.
, and
Song
,
Y. M.
,
2020
, “
A Soft Gripper with Variable Stiffness Inspired by Pangolin Scales, Toothed Pneumatic Actuator and Autonomous Controller
,”
Robot. Comput.-Int. Manuf.
,
61
, p.
101848
.10.1016/j.rcim.2019.101848
17.
Li
,
C. S.
,
Guo
,
X. Y.
,
Xiao
,
X.
,
Lim
,
C. W.
, and
Ren
,
H. L.
,
2020
, “
Flexible Robot With Variable Stiffness in Transoral Surgery
,”
IEEE-ASME Trans. Mechatron.
,
25
(
1
), pp.
1
10
.10.1109/TMECH.2019.2945525
18.
Zhao
,
B
,
Zeng
,
L. Y.
,
Wu
,
Z. H.
, and
Xu
,
K.
,
2020
, “
A Continuum Manipulator for Continuously Variable Stiffness and Its Stiffness Control Formulation
,”
Mech. Mach. Theory
,
149
, p.
103746
.10.1016/j.mechmachtheory.2019.103746
19.
Brancadoro
,
M.
,
Manti
,
M.
,
Grani
,
F.
,
Tognarelli
,
S.
,
Menciassi
,
A.
, and
Cianchetti
,
M.
,
2019
, “
Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition
,”
Front. Robot. AI
,
6
, p.
432162
.10.3389/frobt.2019.00012
20.
Liu
,
J. B.
,
Yin
,
L. K.
,
Chandler
,
J. H.
,
Chen
,
X.
,
Valdastri
,
P.
, and
Zuo
,
S. Y.
,
2021
, “
A Dual-Bending Endoscope With Shape-lockable Hydraulic Actuation and Water-jet Propulsion for Gastrointestinal Tract Screening
,”
Int. J. Med. Robot.
,
17
(
1
), pp.
1
13
.10.1002/rcs.2197
21.
Zhang
,
B. Y.
,
2023
, “
A Miniaturized Variable Stiffness Soft Manipulator With a Customizable LMPA Pattern
,”
IEEE Robot. Autom. Lett.
,
8
(
9
), pp.
5704
5711
.10.1109/LRA.2023.3300241
22.
Deng
,
H. X.
,
Wang
,
M. X.
,
Han
,
G. H.
,
Zhang
,
J.
,
Ma
,
M. C.
,
Zhong
,
X.
, and
Yu
,
L. D.
,
2017
, “
Variable Stiffness Mechanisms of Dual Parameters Changing Magnetorheological Fluid Devices
,”
Smart Mater. Struct.
,
26
(
12
), p.
125014
.10.1088/1361-665X/aa92d5
23.
Xiong
,
J.
,
Sun
,
Y. X.
,
Zheng
,
J.
,
Dong
,
D. B.
, and
Bai
,
L.
,
2021
, “
Design and Experiment of a SMA-Based Continuous-Stiffness-Adjustment Torsional Elastic Component for Variable Stiffness Actuators
,”
Smart Mater. Struct.
,
30
(
10
), p.
105021
.10.1088/1361-665X/ac1eae
24.
Yang
,
Y.
,
Wang
,
P.
,
Liu
,
J.
,
Fu
,
Y. L.
, and
Shen
,
Y.
,
2024
, “
Tunable Stiffness Kirigami Gripper Based on Shape Memory Polymer and Supercoiled Polymer Artificial Muscle for Multi-Mode Grasping
,”
Smart Mater. Struct.
,
33
(
9
), p.
095033
.10.1088/1361-665X/ad6ed1
25.
Li
,
Y. T.
,
Yang
,
Y.
,
Wang
,
P.
,
Zhu
,
H. H.
,
Xia
,
K.
,
Ren
,
T.
, and
Shen
,
Y.
,
2024
, “
A Variable Stiffness Soft Robotic Manipulator Based on Antagonistic Design of Supercoiled Polymer Artificial Muscles and Shape Memory Alloys
,”
Sens. Actuators, A
,
366
, p.
114999
.10.1016/j.sna.2023.114999
26.
Peters
,
J.
,
2019
, “
Actuation and Stiffening in Fluid-Driven Soft Robots Using Low-Melting-Point Material
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Macao, China, Nov. 3--8, pp.
4692
4698
.10.1109/IROS40897.2019
27.
Kitano
,
S.
,
Komatsuzaki
,
T.
,
Suzuki
,
I.
,
Nogawa
,
M.
,
Naito
,
H.
, and
Tanaka
,
S.
,
2020
, “
Development of a Rigidity Tunable Flexible Joint Using Magneto-Rheological Compounds-Toward a Multijoint Manipulator for Laparoscopic Surgery
,”
Front. Robot. AI
,
7
, p.
59
.10.3389/frobt.2020.00059
28.
Jiang
,
S. R.
,
Chen
,
B.
,
Qi
,
F.
,
Cao
,
Y. F.
,
Ju
,
F.
,
Bai
,
D. M.
, and
Wang
,
Y. Y.
,
2021
, “
A Variable-Stiffness Continuum Manipulators by an SMA-Based Sheath in Minimally Invasive Surgery
,”
Int. J. Med. Robot.
,
16
(
2
), p.
e2081
.10.1002/rcs.2081
29.
Li
,
X.
,
Wang
,
H.
, and
Zuo
,
S. Y.
,
2024
, “
A Novel Flexible Catheter With Integrated Magnetic Variable Stiffness and Actuation
,”
Smart Mater. Struct.
,
33
(
2
), p.
025028
.10.1088/1361-665X/ad1dee
30.
IARC Working Group
,
2018
,
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol 116: Drinking Coffee, Mate, and Very Hot Beverages
,
International Agency for Research on Cancer
,
Lyon, France
.
31.
Babaee
,
S.
,
Pajovic
,
S.
,
Kirtane
,
A. R.
,
Shi
,
J.
,
Caffarel-Salvador
,
E.
,
Hess
,
K.
,
Collins
,
J. E.
, et al.,
2019
, “
Temperatureresponsive Biometamaterials for Gastrointestinal Applications
,”
Sci., Transl., Med.
,
11
(
488
), p.
eaau8581
.10.1126/scitranslmed.aau8581
32.
Lee
,
H.
, and
O'Mahony
,
M.
,
2006
, “
At What Temperatures Do Consumers Like to Drink Coffee?: Mixing Methods
,”
J. Food Sci.
,
67
, pp.
2774
2777
.10.1111/j.1365-2621.2002.tb08814.x
33.
De Jong
,
U. W.
,
Day
,
N. E.
,
Mounier-Kuhn
,
P. L.
, and
Haguenauer
,
J. P.
,
1972
, “
The Relationship Between the Ingestion of Hot Coffee and Intraoesophageal Temperature
,”
Gut
,
13
, pp.
24
30
.10.1136/gut.13.1.24
34.
Mattmann
,
M.
,
Marco
,
C. D.
,
Briatico
,
F.
,
Tagliabue
,
S.
,
Colusso
,
A.
,
Chen
,
X. Z.
,
Lussi
,
J.
,
Chautems
,
C.
,
Pané
,
S.
, and
Nelson
,
B.
,
2021
, “
Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters
,”
Adv. Sci.
,
9
(
1
), p.
2103277
.10.1002/advs.202103277
35.
Olympus Corporation
, “
Endoscope Overview 2022
,”Olympus Medical Systems, Tokyo, Japan, accessed Mar. 2025, https://www.olympus.co.uk/medical/en/Products-and-solutions/Products/Echoendoscopes.html
36.
Yeung
,
B. P. M.
, and
Gourlay
,
T.
,
2011
, “
A Technical Review of Flexible Endoscopic Multitasking Platforms
,”
Int. J. Surg.
,
10
(
7
), pp.
345
354
.10.1016/j.ijsu.2012.05.009
37.
Hwang
,
M.
, and
Kwon
,
D. S.
,
2020
, “
K-FLEX: A Flexible Robotic Platform for Scar-Free Endoscopic Surgery
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
16
(
2
), p.
2078
.10.1002/rcs.2078
38.
Zhao
,
R.
,
Yao
,
Y.
, and
Luo
,
Y.
,
2016
, “
Development of a Variable Stiffness Over Tube Based on Low-Melting-Point-Alloy for Endoscopic Surgery
,”
ASME. J. Med. Devices
,
10
(
2
), p.
021002
.10.1115/1.4032813
39.
Stocchi
,
A.
,
Colabella
,
L.
,
Cisilino
,
A.
, and
Alvarez
,
V.
,
2014
, “
Manufacturing and Testing of a Sandwich Panel Honeycomb Core Reinforced With Natural-Fiber Fabrics
,”
Mater. Design
,
55
, pp.
394
403
.10.1016/j.matdes.2013.09.054
40.
Liu
,
A
,
Wang
,
A
,
Jiang
,
Q
,
Jiao
,
Y.
,
Wu
,
L.
, and
Tang
,
Y.
,
2024
, “
Structure Design and Performance Evaluation of Fibre Reinforced Composite Honeycombs: A Review
,”
Appl. Compos. Mater.
,
31
, pp.
1
27
.10.1007/s10443-024-10281-6
41.
Li
,
D. C. F.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Liu
,
Y. H.
,
2021
, “
Honeycomb Jamming: An Enabling Technology of Variable Stiffness Reconfiguration
,”
Soft Robot.
,
8
(
6
), pp.
720
734
.10.1089/soro.2019.0188
42.
Kaur
,
M.
, and
Kim
,
W. S.
,
2019
, “
Toward a Smart Compliant Robotic Gripper Equipped With 3D-Designed Cellular Fingers
,”
Adv. Intell. Syst.
,
1
(
3
), p.
1900019
.10.1002/aisy.201900019
43.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
521
(
7553
), pp.
467
475
.10.1038/nature14543
44.
Wang
,
Z.
,
Wang
,
T.
,
Zhao
,
B.
,
Li
,
B.
,
Zhang
,
P.
, and
Meng
,
M.
,
2021
, “
Hybrid Adaptive Control Strategy for Continuum Surgical Robot Under External Load
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1407
1414
.10.1109/LRA.2021.3057558
45.
Shintani
,
H.
,
2017
, “
Ethylene Oxide Gas Sterilization of Medical Devices
,”
Biocontrol Sci.
,
22
(
1
), pp.
1
16
.10.4265/bio.22.1
46.
Zhang
,
B. Y.
,
Yang
,
P. H.
,
Gu
,
X. M.
, and
Liao
,
H. E.
,
2021
, “
Laser Endoscopic Manipulator Using Spring-Reinforced Multi-DoF Soft Actuator
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
7736
7743
.10.1109/LRA.2021.3100617
You do not currently have access to this content.