Graphical Abstract Figure

Design, analysis, mechanical and in vitro testing of a biomechanically fidelic, compliant mechanism-based motion-preserving lumbar interbody device.

Graphical Abstract Figure

Design, analysis, mechanical and in vitro testing of a biomechanically fidelic, compliant mechanism-based motion-preserving lumbar interbody device.

Close modal

Abstract

A common approach to resolving discogenic low back pain involves replacing one or more degenerated spinal discs with a total disc replacement device. However, existing solutions for intervertebral disc replacement are unable to fully capture the kinetic and kinematic characteristics (i.e., the quality of motion) of the intact spinal disc. In the present work, a novel single-piece compliant mechanism driven, motion-preserving lumbar intervertebral implant design is described. Prototypes were manufactured from Ti6Al4V and evaluated using benchtop mechanical and in vitro biomechanical testing. ASTM F2346 static testing procedures were followed to assess the design's compressive, shear, and torsional properties. Similarly, the forces necessary to cause the device to be ejected from the interbody space and the force required to cause subsidence were tested. in vitro testing was conducted with fresh-frozen human cadaveric lumbar spinal segments to analyze the quality of motion of the intact segments and after they were instrumented with the compliant interbody device prototype. The design was robust in static compressive, shear, and torsional loading. Expulsion and subsidence test results were comparable to devices currently in use. in vitro testing indicated that when appropriately placed in the intervertebral space, the instrumented segment's quality of motion closely replicated the intact segment.

References

1.
Hoy
,
D.
,
March
,
L.
,
Brooks
,
P.
,
Blyth
,
F.
,
Woolf
,
A.
,
Bain
,
C.
,
Williams
,
G.
, et al.,
2014
, “
The Global Burden of Low Back Pain: Estimates From the Global Burden of Disease 2010 Study
,”
Ann. Rheum. Dis.
,
73
(
6
), pp.
968
974
.10.1136/annrheumdis-2013-204428
2.
Hurwitz
,
E. L.
,
Randhawa
,
K.
,
Yu
,
H.
,
Côté
,
P.
, and
Haldeman
,
S.
,
2018
, “
The Global Spine Care Initiative: A Summary of the Global Burden of Low Back and Neck Pain Studies
,”
Eur. Spine J.
,
27
(
S6
), pp.
796
801
.10.1007/s00586-017-5432-9
3.
Vos
,
T.
,
Allen
,
C.
,
Arora
,
M.
,
Barber
,
R. M.
,
Bhutta
,
Z. A.
,
Brown
,
A.
,
Carter
,
A.
, et al.,
2016
, “
Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 310 Diseases and Injuries, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015
,”
Lancet
,
388
(
10053
), pp.
1545
1602
.10.1016/S0140-6736(16)31678-6
4.
Wu
,
A.
,
March
,
L.
,
Zheng
,
X.
,
Huang
,
J.
,
Wang
,
X.
,
Zhao
,
J.
,
Blyth
,
F. M.
,
Smith
,
E.
,
Buchbinder
,
R.
, and
Hoy
,
D.
,
2020
, “
Global Low Back Pain Prevalence and Years Lived With Disability From 1990 to 2017: Estimates From the Global Burden of Disease Study 2017
,”
Ann. Transl. Med.
,
8
(
6
), pp.
299
299
.10.21037/atm.2020.02.175
5.
Koes
,
B. W.
,
Van Tulder
,
M.
, and
Thomas
,
S.
,
2006
, “
Diagnosis and Treatment of Low Back Pain
,”
Br. Med. J.
,
332
(
7555
), pp.
1430
1434
.10.1136/bmj.332.7555.1430
6.
Petersen
,
T.
,
Juhl
,
C. B.
, and
Fournier
,
G. L.
,
2020
, “
Patients With Persistent Low Back Pain and Nerve Root Involvement: To Operate, or Not to Operate, That is the Question
,”
Spine
,
45
(
7
), pp.
483
490
.10.1097/BRS.0000000000003304
7.
Zhao
,
L.
,
Manchikanti
,
L.
,
Kaye
,
A. D.
, and
Abd-Elsayed
,
A.
,
2019
, “
Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options—a Literature Review
,”
Curr. Pain Headache Rep.
,
23
(
11
), pp.
1
9
.10.1007/s11916-019-0821-x
8.
McDermott
,
K. W.
, and
Liang
,
L.
,
2021
, “
Overview of Operating Room Procedures During Inpatient Stays in U.S. Hospitals, 2018. HCUP Statistical Brief #281
,”
Agency for Healthcare Research and Quality (US)
,
Rockville, MD
, accessed July 23, 2024, https://pubmed.ncbi.nlm.nih.gov/34637208/
9.
Wilson
,
R. J.
, and
Holt
,
G. E.
,
2022
, “
Surgical Interventions for Pain
,”
Hospitalized Chronic Pain Patient: A Multidisciplinary Treatment Guide
,
D. A.
Edwards
and
P.
Gulur
, eds.,
Springer International Publishing
,
Cham
, pp.
219
225
.
10.
Galetta
,
M. S.
,
Lorentz
,
N. A.
,
Lan
,
R.
,
Chan
,
C.
,
Zabat
,
M. A.
,
Raman
,
T.
,
Protopsaltis
,
T. S.
, and
Fischer
,
C. R.
,
2023
, “
Reoperation Rates Due to Adjacent Segment Disease Following Primary 1 to 2-Level Minimally Invasive Versus Open Transforaminal Lumbar Interbody Fusion
,”
Spine
,
48
(
18
), pp.
1295
1299
.10.1097/BRS.0000000000004645
11.
Gillet
,
P.
,
2003
, “
The Fate of the Adjacent Motion Segments After Lumbar Fusion
,”
Clin. Spine Surg.
,
16
(
4
), pp.
338
345
.10.1097/00024720-200308000-00005
12.
Harrop
,
J. S.
,
Youssef
,
J. A.
,
Maltenfort
,
M.
,
Vorwald
,
P.
,
Jabbour
,
P.
,
Bono
,
C. M.
,
Goldfarb
,
N.
,
Vaccaro
,
A. R.
, and
Hilibrand
,
A. S.
,
2008
, “
Lumbar Adjacent Segment Degeneration and Disease After Arthrodesis and Total Disc Arthroplasty
,”
Spine
,
33
(
15
), pp.
1701
1707
.10.1097/BRS.0b013e31817bb956
13.
Gornet
,
M. F.
,
Burkus
,
J. K.
,
Dryer
,
R. F.
,
Peloza
,
J. H.
,
Schranck
,
F. W.
, and
Copay
,
A. G.
,
2019
, “
Lumbar Disc Arthroplasty Versus Anterior Lumbar Interbody Fusion: 5-Year Outcomes for Patients in the Maverick Disc Investigational Device Exemption Study
,”
J. Neurosurg.: Spine
,
31
(
3
), pp.
347
356
.10.3171/2019.2.SPINE181037
14.
Guyer
,
R. D.
,
McAfee
,
P. C.
,
Banco
,
R. J.
,
Bitan
,
F. D.
,
Cappuccino
,
A.
,
Geisler
,
F. H.
,
Hochschuler
,
S. H.
, et al.,
2009
, “
Prospective, Randomized, Multicenter Food and Drug Administration Investigational Device Exemption Study of Lumbar Total Disc Replacement With the CHARITE Artificial Disc Versus Lumbar Fusion: Five-Year Follow-Up
,”
Spine J.
,
9
(
5
), pp.
374
386
.10.1016/j.spinee.2008.08.007
15.
Guyer
,
R. D.
,
Pettine
,
K.
,
Roh
,
J. S.
,
Dimmig
,
T. A.
,
Coric
,
D.
,
McAfee
,
P. C.
, and
Ohnmeiss
,
D. D.
,
2016
, “
Five-Year Follow-Up of a Prospective, Randomized Trial Comparing Two Lumbar Total Disc Replacements
,”
Spine
,
41
(
1
), pp.
3
8
.10.1097/BRS.0000000000001168
16.
Zigler
,
J. E.
, and
Delamarter
,
R. B.
,
2012
, “
Five-Year Results of the Prospective, Randomized, Multicenter, Food and Drug Administration Investigational Device Exemption Study of the ProDisc-L Total Disc Replacement Versus Circumferential Arthrodesis for the Treatment of Single-Level Degenerative Disc Disease
,”
J. Neurosurg.: Spine
,
17
(
6
), pp.
493
501
.10.3171/2012.9.SPINE11498
17.
Cui
,
X. D.
,
Li
,
H. T.
,
Zhang
,
W.
,
Zhang
,
L. L.
,
Luo
,
Z. P.
, and
Yang
,
H. L.
,
2018
, “
Mid- to Long-Term Results of Total Disc Replacement for Lumbar Degenerative Disc Disease: A Systematic Review
,”
J. Orthop. Surg. Res.
,
13
(
1
), p.
326
.10.1186/s13018-018-1032-6
18.
Fritzell
,
P.
,
Hägg
,
O.
, and
Nordwall
,
A.
,
2003
, “
Complications in Lumbar Fusion Surgery for Chronic Low Back Pain: Comparison of Three Surgical Techniques Used in a Prospective Randomized Study. A Report From the Swedish Lumbar Spine Study Group
,”
Eur. Spine J.
,
12
(
2
), pp.
178
189
.10.1007/s00586-002-0493-8
19.
Ren
,
C.
,
Song
,
Y.
,
Liu
,
L.
, and
Xue
,
Y.
,
2014
, “
Adjacent Segment Degeneration and Disease After Lumbar Fusion Compared With Motion-Preserving Procedures: A Meta-Analysis
,”
Eur. J. Orthop. Surg. Traumatol.
,
24
(
S1
), pp.
245
253
.10.1007/s00590-014-1445-9
20.
Jacobs
,
W.
,
Van der Gaag
,
N. A.
,
Tuschel
,
A.
,
de Kleuver
,
M.
,
Peul
,
W.
,
Verbout
,
A. J.
,
Oner
,
F. C.
, and
Cochrane Back and Neck Group
,
2012
, “
Total Disc Replacement for Chronic Back Pain in the Presence of Disc Degeneration
,”
Cochrane Database Syst. Rev.
,
12
(9), p. CD008326.10.1002/14651858.CD008326.pub2
21.
Nie
,
H.
,
Chen
,
G.
,
Wang
,
X.
, and
Zeng
,
J.
,
2015
, “
Comparison of Total Disc Replacement With Lumbar Fusion: A Meta-Analysis of Randomized Controlled Trials
,”
J. Coll. Phys. Surg. Pak.
,
25
(
1
), pp.
60
67
.https://pubmed.ncbi.nlm.nih.gov/25604372/
22.
Rao
,
M. J.
, and
Cao
,
S. S.
,
2014
, “
Artificial Total Disc Replacement Versus Fusion for Lumbar Degenerative Disc Disease: A Meta-Analysis of Randomized Controlled Trials
,”
Arch. Orthop. Trauma Surg.
,
134
(
2
), pp.
149
158
.10.1007/s00402-013-1905-4
23.
Wei
,
J.
,
Song
,
Y.
,
Sun
,
L.
, and
Lv
,
C.
,
2013
, “
Comparison of Artificial Total Disc Replacement Versus Fusion for Lumbar Degenerative Disc Disease: A Meta-Analysis of Randomized Controlled Trials
,”
Int. Orthop.
,
37
(
7
), pp.
1315
1325
.10.1007/s00264-013-1883-8
24.
Yajun
,
W.
,
Yue
,
Z.
,
Xiuxin
,
H.
, and
Cui
,
C.
,
2010
, “
A Meta-Analysis of Artificial Total Disc Replacement Versus Fusion for Lumbar Degenerative Disc Disease
,”
Eur. Spine J.
,
19
(
8
), pp.
1250
1261
.10.1007/s00586-010-1394-x
25.
Upfill-Brown
,
A.
,
Policht
,
J.
,
Sperry
,
B. P.
,
Ghosh
,
D.
,
Shah
,
A. A.
,
Sheppard
,
W. L.
,
Lord
,
E.
,
Shamie
,
A. N.
, and
Park
,
D. Y.
,
2022
, “
National Trends in the Utilization of Lumbar Disc Replacement for Lumbar Degenerative Disc Disease Over a 10-Year Period, 2010 to 2019
,”
J. Spine Surg.
,
8
(
3
), pp.
343
352
.10.21037/jss-22-4
26.
Cecchinato
,
R.
,
Bourghli
,
A.
, and
Obeid
,
I.
,
2020
, “
Revision Surgery of Spinal Dynamic Implants: A Literature Review and Algorithm Proposal
,”
Eur. Spine J
,
29
(
S1
), pp.
57
65
.10.1007/s00586-019-06282-w
27.
Zigler
,
J.
,
Delamarter
,
R.
,
Spivak
,
J. M.
,
Linovitz
,
R. J.
,
Danielson
,
G. O.
, III
,
Haider
,
T. T.
,
Cammisa
,
F.
, et al.,
2007
, “
Results of the Prospective, Randomized, Multicenter Food and Drug Administration Investigational Device Exemption Study of the ProDisc®-L Total Disc Replacement Versus Circumferential Fusion for the Treatment of 1-Level Degenerative Disc Disease
,”
Spine
,
32
(
11
), pp.
1155
1162
.10.1097/BRS.0b013e318054e377
28.
Austen
,
S.
,
Punt
,
I. M.
,
Cleutjens
,
J. P.
,
Willems
,
P. C.
,
Kurtz
,
S. M.
,
MacDonald
,
D. W.
,
van Rhijn
,
L. W.
, and
van Ooij
,
A.
,
2012
, “
Clinical, Radiological, Histological and Retrieval Findings of Activ-L and Mobidisc Total Disc Replacements: A Study of Two Patients
,”
Eur. Spine J.
,
21
(
S4
), pp.
513
520
.10.1007/s00586-011-2141-7
29.
Bowden
,
A. E.
,
Guerin
,
H. L.
,
Villarraga
,
M. L.
,
Patwardhan
,
A. G.
, and
Ochoa
,
J. A.
,
2008
, “
Quality of Motion Considerations in Numerical Analysis of Motion Restoring Implants of the Spine
,”
Clin. Biomech.
,
23
(
5
), pp.
536
544
.10.1016/j.clinbiomech.2007.12.010
30.
Scott-Young
,
M.
, and
Alves
,
O. L.
,
2025
, “
The Future of Arthroplasty in the Spine
,”
Int. J. Spine Surg.
,
19
(
S2
), pp.
S25
S37
.10.14444/8737
31.
Faulks
,
C. R.
,
Biddau
,
D. T.
,
Rossi
,
V. J.
,
Brazenor
,
G. A.
, and
Malham
,
G. M.
,
2022
, “
Long-Term Outcomes Following Lumbar Total Disc Replacement With M6-L
,”
J. Spine Surg.
,
8
(
3
), pp.
304
313
.10.21037/jss-22-36
32.
Scott-Young
,
M.
,
Rathbone
,
E.
, and
Grierson
,
L.
,
2022
, “
Midterm Osteolysis-Induced Aseptic Failure of the M6-C™ Cervical Total Disc Replacement Secondary to Polyethylene Wear Debris
,”
Eur. Spine J.
,
31
(
5
), pp.
1273
1282
.10.1007/s00586-021-07094-7
33.
Cannon
,
J. R.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2005
, “
Compliant Rolling-Contact Element Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Vol.
47446
, pp.
3
13
.10.1115/DETC2005-84073
34.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2012
, “
A Compliant-Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
, pp.
78
86
.10.1016/j.ijsp.2012.02.002
35.
Orr
,
D.
,
Jensen
,
A.
,
Peterson
,
T.
,
Bischoff
,
B.
,
Taylor
,
L.
,
Velasco
,
D.
,
Fullwood
,
D.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
, “
The Interior Contact-Aided Rolling Element (I-CORE)
,”
ASME J. Mech. Rob.
,
17
(
4
), p.
044501
.10.1115/1.4066851
36.
Blunn
,
G. W.
,
Walker
,
P. S.
,
Joshi
,
A.
, and
Hardinge
,
K.
,
1991
, “
The Dominance of Cyclic Sliding in Producing Wear in Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
,
273
, pp.
253
260
.https://pubmed.ncbi.nlm.nih.gov/1959278/
37.
Catani
,
F.
,
Innocenti
,
B.
,
Belvedere
,
C.
,
Labey
,
L.
,
Ensini
,
A.
, and
Leardini
,
A.
,
2010
, “
The Mark Coventry Award: Articular Contact Estimation in TKA Using in Vivo Kinematics and Finite Element Analysis
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
19
28
.10.1007/s11999-009-0941-4
38.
Cornwall
,
G. B.
,
Bryant
,
J. T.
, and
Hansson
,
C. M.
,
2001
, “
The Effect of Kinematic Conditions on the Wear of Ultra-High Molecular Weight Polyethylene (UHMWPE) in Orthopaedic Bearing Applications
,”
Proc. Inst. Mech. Eng., Part H
,
215
(
1
), pp.
95
106
.10.1243/0954411011533454
39.
O'Brien
,
S. T.
,
Bohm
,
E. R.
,
Petrak
,
M. J.
,
Wyss
,
U. P.
, and
Brandt
,
J. M.
,
2014
, “
An Energy Dissipation and Cross Shear Time Dependent Computational Wear Model for the Analysis of Polyethylene Wear in Total Knee Replacements
,”
J. Biomech.
,
47
(
5
), pp.
1127
1133
.10.1016/j.jbiomech.2013.12.017
40.
Scarvell
,
J. M.
,
Smith
,
P. N.
,
Refshauge
,
K. M.
,
Galloway
,
H. R.
, and
Woods
,
K. R.
,
2004
, “
Comparison of Kinematic Analysis by Mapping Tibiofemoral Contact With Movement of the Femoral Condylar Centres in Healthy and Anterior Cruciate Ligament Injured Knees
,”
J. Orthop. Res.
,
22
(
5
), pp.
955
962
.10.1016/j.orthres.2003.12.016
41.
Stolworthy
,
D. K.
,
Zirbel
,
S. A.
,
Howell
,
L. L.
,
Samuels
,
M.
, and
Bowden
,
A. E.
,
2014
, “
Characterization and Prediction of Rate-Dependent Flexibility in Lumbar Spine Biomechanics at Room and Body Temperature
,”
Spine J.
,
14
(
5
), pp.
789
798
.10.1016/j.spinee.2013.08.043
42.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in All Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.10.1016/j.spinee.2013.02.010
43.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2014
, “
A Standardized Representation of Spinal Quality of Motion
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
11
), pp.
1168
1175
.10.1177/0954411914559079
44.
Orr
,
D.
,
Anderson
,
R.
,
Jensen
,
A.
,
Peterson
,
T.
,
Edwards
,
J.
, and
Bowden
,
A. E.
,
2025
, “
Expandable Interbody Cages for Lumbar Spinal Fusion: A Systematic Review
,”
Spine J.
, (epub).10.1016/j.spinee.2025.01.013
45.
ASTM
,
2005
, “
Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial Discs
,” ASTM International,
ASTM F2346-18
. 10.1520/F2346-18
46.
FDA
,
2015
, “
activL Artificial Disc - P120024, Summary Report
,”
Food and Drug Administration
, Silver Spring, MD, accessed Aug. 29, 2024, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P120024
47.
FDA
,
2020
, “
prodisc L Total Disc Replacement - P050010/S020, Summary Report
,”
Food and Drug Administration
, Silver Spring, MD, accessed Aug. 29, 2024, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P050010S020
48.
Calvert
,
K. L.
,
Trumble
,
K. P.
,
Webster
,
T. J.
, and
Kirkpatrick
,
L. A.
,
2010
, “
Characterization of Commercial Rigid Polyurethane Foams Used as Bone Analogs for Implant Testing
,”
J. Mater. Sci.: Mater. Med.
,
21
(
5
), pp.
1453
1461
.10.1007/s10856-010-4024-6
49.
A. F2267
,
2018
,
Standard Test Method for Measuring Load Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression
,
ASTM International West
,
Conshohocken, PA
, Vol.
F2267
.
50.
Bartanusz
,
V.
,
Muzumdar
,
A.
,
Hussain
,
M.
,
Moldavsky
,
M.
,
Bucklen
,
B.
, and
Khalil
,
S.
,
2011
, “
Spinal Instrumentation After Complete Resection of the Last Lumbar Vertebra: An: in Vitro: Biomechanical Study After L5 Spondylectomy
,”
Spine
,
36
(
13
), pp.
1017
1021
.10.1097/BRS.0b013e3181e92458
51.
Nachemson
,
A. L.
,
1981
, “
Disc Pressure Measurements
,”
Spine
,
6
(
1
), pp.
93
97
.10.1097/00007632-198101000-00020
52.
FDA
,
2006
, “
PRODISC-L Total Disc Replacement - P050010, Summary Report
,”
Food and Drug Administration
, Silver Spring, MD, accessed Aug. 29, 2024, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p050010
53.
Yaszay
,
B.
,
Bendo
,
J. A.
,
Goldstein
,
J. A.
,
Quirno
,
M.
,
Spivak
,
J. M.
, and
Errico
,
T. J.
,
2008
, “
Effect of Intervertebral Disc Height on Postoperative Motion and Outcomes After ProDisc-L Lumbar Disc Replacement
,”
Spine
,
33
(
5
), pp.
508
512
.10.1097/BRS.0b013e318165b998
54.
Panjabi
,
M. M.
, and
White
,
A. A. I.
,
1980
, “
Basic Biomechanics of the Spine
,”
Neurosurgery
,
7
(
1
), pp.
76
93
.10.1227/00006123-198007000-00014
55.
Han
,
J. S.
,
Goel
,
V. K.
,
Ahn
,
J. Y.
,
Winterbottom
,
J.
,
McGowan
,
D.
,
Weinstein
,
J.
, and
Cook
,
T.
,
1995
, “
Loads in the Spinal Structures During Lifting: Development of a Three-Dimensional Comprehensive Biomechanical Model
,”
Eur. Spine J.
,
4
(
3
), pp.
153
168
.10.1007/BF00298240
56.
Yue
,
J. J.
,
Garcia
,
R.
, Jr.
, and
Miller
,
L. E.
,
2016
, “
The activL® Artificial Disc: A Next-Generation Motion-Preserving Implant for Chronic Lumbar Discogenic Pain
,”
Med. Devices: Evidence Res.
,
9
, pp.
75
84
.10.2147/MDER.S102949
57.
Biswas
,
J. K.
,
Malas
,
A.
,
Majumdar
,
S.
, and
Rana
,
M.
,
2022
, “
A Comparative Finite Element Analysis of Artificial Intervertebral Disc Replacement and Pedicle Screw Fixation of the Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
25
(
16
), pp.
1812
1820
.10.1080/10255842.2022.2039130
58.
Parish
,
J. M.
,
Asher
,
A. M.
, and
Coric
,
D.
,
2021
, “
Adjacent-Segment Disease Following Spinal Arthroplasty
,”
Neurosurg. Clin.
,
32
(
4
), pp.
505
510
.10.1016/j.nec.2021.05.009
59.
Scott-Young
,
M.
,
McEntee
,
L.
,
Rathbone
,
E.
,
Nielsen
,
D.
,
Grierson
,
L.
, and
Hing
,
W.
,
2022
, “
Single-Level Total Disc Replacement: Index-Level and Adjacent-Level Revision Surgery Incidence, Characteristics, and Outcomes
,”
Int. J. Spine Surg.
,
16
(
5
), pp.
847
858
.10.14444/8331
60.
Shukla
,
G. G.
,
Wu
,
A.
,
Matur
,
A. V.
,
McGrath
,
K.
,
Khalid
,
S.
,
Garner
,
R.
,
Owen
,
B.
, et al.,
2023
, “
Lumbar Arthroplasty Is Associated With a Lower Incidence of Adjacent Segment Disease Compared With ALIF: A Propensity-Matched Analysis
,”
Spine
,
48
(
14
), pp.
978
983
.10.1097/BRS.0000000000004668
61.
Tao
,
X.
, and
Adogwa
,
O.
,
2024
, “
Lumbar Arthroplasty is Associated With a Lower Incidence of Adjacent Segment Disease Compared With ALIF
,”
Spine
,
49
(
22
), p.
E386
.10.1097/BRS.0000000000005016
62.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
, p.
17
.
63.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons Inc
.,
Chichester, West Sussex, UK; Hoboken
. p.
18
.
64.
Goldenberg
,
Y.
,
Tee
,
J. W.
,
Salinas-La Rosa
,
C. M.
, and
Murphy
,
M.
,
2016
, “
Spinal Metallosis: A Systematic Review
,”
Eur. Spine J.
,
25
(
5
), pp.
1467
1473
.10.1007/s00586-015-4347-6
You do not currently have access to this content.