Graphical Abstract Figure

The figure illustrates the fabrication process of PU-ThermoTape, employing a double transfer adhesive coating technique. The lower portion of the figure demonstrates ThermoTape’s temperature-responsive properties. As the temperature increases from 25°C to 45°C, the adhesion of the tape decreases, effectively reducing pain and minimizing the risk of Medical Adhesive-Related Skin Injuries (MARSI).

Graphical Abstract Figure

The figure illustrates the fabrication process of PU-ThermoTape, employing a double transfer adhesive coating technique. The lower portion of the figure demonstrates ThermoTape’s temperature-responsive properties. As the temperature increases from 25°C to 45°C, the adhesion of the tape decreases, effectively reducing pain and minimizing the risk of Medical Adhesive-Related Skin Injuries (MARSI).

Close modal

Abstract

Medical adhesives are vital for securing wearable sensors, wound dressings, and critical medical devices. These adhesives must balance strong adhesion with patient comfort, especially when used over extended periods. Adhesives that maintain their efficacy for more than 2 weeks are essential for continuous monitoring devices, as they enhance diagnostic accuracy and reduce dressing changes, minimizing patient discomfort and infection risk. However, current long-wear adhesives often use aggressive acrylics that can cause skin injuries. To overcome these limitations, we developed an advanced ThermoTape offering temperature-responsive properties with a polyurethane (PU) backing for more than 14 days of wear. A double transfer coating process fabricated PU-ThermoTape, with surface morphology characterized using Atomic Force Microscopy. Differential Scanning Calorimetry and thermography determined the optimal removal window. Peeling strength tests were conducted at room and elevated temperatures to assess performance. in vitro, PU-ThermoTape displayed an average peeling strength of 0.3 N/mm at 25 °C, decreasing by 75% when heated to 45 °C, with an optimal removal window of approximately 2.5 min. The tape demonstrated excellent skin conformity with its polyurethane backing. In a 14-day wearability study with seven volunteers, PU-ThermoTape outperformed Tegaderm, maintaining temperature-responsiveness and allowing unrestricted daily activities throughout. PU-ThermoTape provides robust adhesion, high skin conformity, and facilitates gentle removal after brief warming, positioning it as a versatile adhesive suitable for various applications with different duration requirements.

References

1.
Kim
,
H.
,
Kim
,
E.
,
Choi
,
C.
, and
Yeo
,
W.-H.
,
2022
, “
Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices
,”
Micromachines
,
13
(
4
), p.
629
.10.3390/mi13040629
2.
Dong
,
W.
,
Cheng
,
X.
,
Xiong
,
T.
, and
Wang
,
X.
,
2019
, “
Stretchable Bio-Potential Electrode With Self-Similar Serpentine Structure for Continuous, Long-Term, Stable ECG Recordings
,”
Biomed. Microdevices
,
21
(
1
), p.
6
.10.1007/s10544-018-0353-x
3.
Wang
,
M.
,
Yang
,
Y.
,
Min
,
J.
,
Song
,
Y.
,
Tu
,
J.
,
Mukasa
,
D.
,
Ye
,
C.
, et al.,
2022
, “
A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients
,”
Nat. Biomed. Eng.
,
6
(
11
), pp.
1225
1235
.10.1038/s41551-022-00916-z
4.
Levin
,
A.
,
Gong
,
S.
, and
Cheng
,
W.
,
2023
, “
Wearable Smart Bandage-Based Bio-Sensors
,”
Biosensors
,
13
(
4
), p.
462
.10.3390/bios13040462
5.
Brown
,
M. S.
,
Ashley
,
B.
, and
Koh
,
A.
,
2018
, “
Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects
,”
Front. Bioeng. Biotechnol.
,
6
, p.
47
.10.3389/fbioe.2018.00047
6.
Chung
,
E. P.
,
Nguyen
,
J. Q.
,
Tellkamp-Schehr
,
T.
,
Goebel
,
K.
,
Ollek
,
A.
,
Krein
,
C.
,
Wells
,
A. R.
, et al.,
2023
, “
A Soft Skin Adhesive (SSA) Patch for Extended Release of Pirfenidone in Burn Wounds
,”
Pharmaceutics
,
15
(
7
), p.
1842
.10.3390/pharmaceutics15071842
7.
Mavrovounis
,
G.
,
Mermiri
,
M.
,
Chatzis
,
D. G.
, and
Pantazopoulos
,
I.
,
2020
, “
Peripherally Inserted Central Catheter Lines for Intensive Care Unit and Onco-Hematologic Patients: A Systematic Review and Meta-Analysis
,”
Heart Lung
,
49
(
6
), pp.
922
933
.10.1016/j.hrtlng.2020.07.008
8.
Moureau
,
N. L.
,
2019
,
Vessel Health and Preservation: The Right Approach for Vascular Access
,
Springer International Publishing
,
Cham
.
9.
Crouzet
,
J.
,
Bertrand
,
X.
,
Venier
,
A. G.
,
Badoz
,
M.
,
Husson
,
C.
, and
Talon
,
D.
,
2007
, “
Control of the Duration of Urinary Catheterization: Impact on Catheter-Associated Urinary Tract Infection
,”
J. Hosp. Infect.
,
67
(
3
), pp.
253
257
.10.1016/j.jhin.2007.08.014
10.
Tsuchiya
,
M.
,
Kushibiki
,
T.
,
Yamashiro
,
T.
,
Mayumi
,
Y.
,
Ishihara
,
M.
, and
Azuma
,
R.
,
2024
, “
Continuous Negative‐Pressure Wound Therapy Improves the Survival Rate of Skin Grafts and Shortens the Time Required for Skin Graft Survival
,”
Skin Res. Technol.
,
30
(
7
), p.
e13865
.10.1111/srt.13865
11.
Martinez-Tabares
,
F. J.
,
Gaviria-Gomez
,
N.
, and
Castellanos-Dominguez
,
G.
,
2014
, “
Very Long-Term ECG Monitoring Patch With Improved Functionality and Wearability
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
IEEE
,
Chicago, IL
, Aug. 26--30, pp.
5964
5967
.10.1109/EMBC.2014.6944987
12.
Wang
,
Y.
,
Haick
,
H.
,
Guo
,
S.
,
Wang
,
C.
,
Lee
,
S.
,
Yokota
,
T.
, and
Someya
,
T.
,
2022
, “
Skin Bioelectronics Towards Long-Term, Continuous Health Monitoring
,”
Chem. Soc. Rev.
,
51
(
9
), pp.
3759
3793
.10.1039/D2CS00207H
13.
Gurtner
,
G. C.
,
Werner
,
S.
,
Barrandon
,
Y.
, and
Longaker
,
M. T.
,
2008
, “
Wound Repair and Regeneration
,”
Nature
,
453
(
7193
), pp.
314
321
.10.1038/nature07039
14.
Corley
,
A.
,
Marsh
,
N.
,
Ullman
,
A. J.
, and
Rickard
,
C. M.
,
2023
, “
Peripheral Intravenous Catheter Securement: An Integrative Review of Contemporary Literature Around Medical Adhesive Tapes and Supplementary Securement Products
,”
J. Clin. Nurs.
,
32
(
9–10
), pp.
1841
1857
.10.1111/jocn.16237
15.
Fadziruddin
,
Z. F. Z.
,
Basri
,
A. A.
, and
Basri
,
E. I.
,
2020
, “
Review on Dislodgement & Securement Risk of Peripheral Intravenous Catheter/Cannula and The Needs of PIVC Securement Device
,”
Malays. J. Med. Health Sci.
,
16
, pp.
55
65
.https://medic.upm.edu.my/upload/dokumen/2020082609332410_MJMHS_0340.pdf
16.
Marsh
,
N.
,
Webster
,
J.
,
Mihala
,
G.
,
Rickard
,
C. M.
, and
Cochrane Wounds Group
,
2015
, “
Devices and Dressings to Secure Peripheral Venous Catheters to Prevent Complications
,”
Cochrane Database Syst. Rev.
,
2015
(
6
), p.
CD011070
.10.1002/14651858.CD011070.pub2
17.
Sharp
,
R.
,
Xu
,
Q.
,
Pumpa
,
R.
,
Elliott
,
L.
,
Corsini
,
N.
,
Marker
,
J.
,
Altschwager
,
J.
, et al.,
2024
, “
Supportive Care Needs of Adults Living With a Peripherally Inserted Central Catheter (PICC) at Home: A Qualitative Content Analysis
,”
BMC Nurs.
,
23
(
1
), p.
4
.10.1186/s12912-023-01614-0
18.
Zhao
,
J.
,
Ruan
,
Z.
,
Zhao
,
J.
,
Yang
,
Y.
,
Xiao
,
S.
, and
Ji
,
H.
,
2022
, “
Study on the Timing of First Dressing Change With Alginate Dressing Application in PICC Placement Among Tumor Patients
,”
J. Canver Res. Ther.
,
18
(
7
), pp.
2013
2020
.10.4103/jcrt.jcrt_941_22
19.
Benhamou
,
E.
,
Fessard
,
E.
,
Com-Nougué
,
C.
,
Beaussier
,
P.
,
Nitenberg
,
G.
,
Tancrède
,
C.
,
Dodeman
,
S.
, and
Hartmann
,
O.
,
2002
, “
Less Frequent Catheter Dressing Changes Decrease Local Cutaneous Toxicity of High-Dose Chemotherapy in Children, Without Increasing the Rate of Catheter-Related Infections: Results of a Randomised Trial
,”
Bone Marrow Transplant.
,
29
(
8
), pp.
653
658
.10.1038/sj.bmt.1703511
20.
Ha
,
T.
,
Tran
,
J.
,
Liu
,
S.
,
Jang
,
H.
,
Jeong
,
H.
,
Mitbander
,
R.
,
Huh
,
H.
, et al.,
2019
, “
A Chest‐Laminated Ultrathin and Stretchable E‐Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals
,”
Adv. Sci.
,
6
(
14
), p.
1900290
.10.1002/advs.201900290
21.
Choi
,
S.
,
Han
,
S. I.
,
Jung
,
D.
,
Hwang
,
H. J.
,
Lim
,
C.
,
Bae
,
S.
,
Park
,
O. K.
, et al.,
2018
, “
Highly Conductive, Stretchable and Biocompatible Ag–Au Core–Sheath Nanowire Composite for Wearable and Implantable Bioelectronics
,”
Nat. Nanotechnol.
,
13
(
11
), pp.
1048
1056
.10.1038/s41565-018-0226-8
22.
Jeong
,
H.
,
Wang
,
L.
,
Ha
,
T.
,
Mitbander
,
R.
,
Yang
,
X.
,
Dai
,
Z.
,
Qiao
,
S.
,
Shen
,
L.
,
Sun
,
N.
, and
Lu
,
N.
,
2019
, “
Modular and Reconfigurable Wireless E‐Tattoos for Personalized Sensing
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900117
.10.1002/admt.201900117
23.
Koo
,
J. H.
,
Jeong
,
S.
,
Shim
,
H. J.
,
Son
,
D.
,
Kim
,
J.
,
Kim
,
D. C.
,
Choi
,
S.
,
Hong
,
J.-I.
, and
Kim
,
D.-H.
,
2017
, “
Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes
,”
ACS Nano
,
11
(
10
), pp.
10032
10041
.10.1021/acsnano.7b04292
24.
Fumarola
,
S.
,
Allaway
,
R.
,
Callaghan
,
R.
,
Collier
,
M.
,
Downie
,
F.
,
Geraghty
,
J.
,
Kiernan
,
S.
, et al.,
2020
, “
Overlooked and Underestimated: Medical Adhesive-Related Skin Injuries
,”
J. Wound Care
,
29
(
Sup3c
), pp.
S1
S24
.10.12968/jowc.2020.29.Sup3c.S1
25.
McNichol
,
L.
,
Lund
,
C.
,
Rosen
,
T.
, and
Gray
,
M.
,
2013
, “
Medical Adhesives and Patient Safety: State of the Science Consensus Statements for the Assessment, Prevention, and Treatment of Adhesive-Related Skin Injuries
,”
Orthop. Nurs.
,
32
(
5
), pp.
267
281
.10.1097/NOR.0b013e3182a39caf
26.
Kim
,
M. J.
,
Jang
,
J. M.
,
Kim
,
H. K.
,
Heo
,
H. J.
, and
Jeong
,
I. S.
,
2019
, “
Medical Adhesives-Related Skin Injury in a Pediatric Intensive Care Unit: A Single-Center Observational Study
,”
J. Wound, Ostomy Continence Nurs.
,
46
(
6
), pp.
491
496
.10.1097/WON.0000000000000592
27.
Baker
,
H.
, and
Kligman
,
A. M.
,
1967
, “
Technique for Estimating Turnover Time of Human Stratum Corneum
,”
Arch. Dermatol.
,
95
(
4
), pp.
408
411
.10.1001/archderm.1967.01600340068016
28.
Lim
,
S. D.
,
Svanevik
,
C. C.
,
Fauver
,
M. E.
,
Nelson
,
L. Y.
,
Taroc
,
A.-M.
,
Emery
,
A. F.
, and
Seibel
,
E. J.
,
2020
, “
Proof of Concept of a Surrogate High-Adhesion Medical Tape Using Photo-Thermal Release for Rapid and Less Painful Removal
,”
ASME J. Med. Devices
,
14
(
2
), p.
021001
.10.1115/1.4045298
29.
Swanson
,
S.
,
Bashmail
,
R.
,
Fellin
,
C.
,
Luu
,
V.
,
Shires
,
N.
,
Cox
,
P.
,
Nelson
,
A.
, et al.,
2022
, “
Prototype Development of a Temperature-Sensitive High-Adhesion Medical Tape to Reduce Medical-Adhesive-Related Skin Injury and Improve Quality of Care
,”
Int. J. Mol. Sci.
,
23
(
13
), p.
7164
.10.3390/ijms23137164
30.
Swanson
,
S.
,
Luu
,
V.
,
Smith
,
R.
,
Gross
,
A.
,
Tudor
,
J.
,
MacKenzie
,
D.
,
Taroc
,
A.-M.
,
Gow
,
K. W.
,
Nelson
,
L. Y.
, and
Seibel
,
E. J.
,
2023
, “
A Temperature-Sensitive, High-Adhesion Medical Tape: A Comparative, Single-Blind Clinical Trial
,”
J. Wound Care
,
32
(
10
), pp.
665
675
.10.12968/jowc.2023.32.10.665
31.
Wokovich
,
A.
,
Prodduturi
,
S.
,
Doub
,
W.
,
Hussain
,
A.
, and
Buhse
,
L.
,
2006
, “
Transdermal Drug Delivery System (TDDS) Adhesion as a Critical Safety, Efficacy and Quality Attribute
,”
Eur. J. Pharm. Biopharm.
,
64
(
1
), pp.
1
8
.10.1016/j.ejpb.2006.03.009
32.
Hempel
,
E.
,
Budde
,
H.
,
Höring
,
S.
, and
Beiner
,
M.
,
2006
, “
On the Crystallization Behavior of Frustrated Alkyl Groups in Poly(n-Octadecyl Methacrylate)
,”
J. Non-Cryst. Solids
,
352
(
42–49
), pp.
5013
5020
.10.1016/j.jnoncrysol.2006.01.131
33.
Li
,
S.
,
Wang
,
H.
,
Liu
,
L.
,
Xu
,
H.
, and
Shi
,
H.
,
2018
, “
On the Crystallization Behavior of a Poly(Stearyl Methacrylate) Comb-Like Polymer Inside a Nanoscale Environment
,”
CrystEngComm
,
20
(
45
), pp.
7348
7356
.10.1039/C8CE01378K
34.
Lorenzo
,
A. T.
,
Arnal
,
M. L.
,
Albuerne
,
J.
, and
Müller
,
A. J.
,
2007
, “
DSC Isothermal Polymer Crystallization Kinetics Measurements and the Use of the Avrami Equation to Fit the Data: Guidelines to Avoid Common Problems
,”
Polym. Test.
,
26
(
2
), pp.
222
231
.10.1016/j.polymertesting.2006.10.005
35.
Mao
,
Y.
,
Gong
,
J.
,
Zhu
,
M.
, and
Ito
,
H.
,
2019
, “
Crystal Transition Behavior and Thermal Properties of Thermal-Energy-Storage Copolymer Materials With an n-Behenyl Side-Chain
,”
Polymers
,
11
(
9
), p.
1512
.10.3390/polym11091512
36.
Wang
,
S.
,
Fang
,
Y.
,
He
,
H.
,
Zhang
,
L.
,
Li
,
C.
, and
Ouyang
,
J.
,
2021
, “
Wearable Stretchable Dry and Self‐Adhesive Strain Sensors With Conformal Contact to Skin for High‐Quality Motion Monitoring
,”
Adv. Funct. Mater.
,
31
(
5
), p.
2007495
.10.1002/adfm.202007495
37.
Diethert
,
A.
,
Peykova
,
Y.
,
Willenbacher
,
N.
, and
Müller-Buschbaum
,
P.
,
2010
, “
Near-Surface Composition Profiles and the Adhesive Properties of Statistical Copolymer Films Being Model Systems of Pressure Sensitive Adhesive Films
,”
ACS Appl. Mater. Interfaces
,
2
(
7
), pp.
2060
2068
.10.1021/am100322j
38.
Diethert
,
A.
,
Ecker
,
K.
,
Peykova
,
Y.
,
Willenbacher
,
N.
, and
Müller-Buschbaum
,
P.
,
2011
, “
Tailoring the Near-Surface Composition Profiles of Pressure-Sensitive Adhesive Films and the Resulting Mechanical Properties
,”
ACS Appl. Mater. Interfaces
,
3
(
6
), pp.
2012
2021
.10.1021/am200254m
39.
Swanson
,
S.
,
2023
, “
Prototype Development and Clinical Testing of a Temperature- Sensitive High-Adhesion Medical Tape to Reduce Medical-Adhesive Related Skin Injury and Improve Quality of Care
,” Ph.D. thesis,
University of Washington
,
Washington
.
40.
Powell
,
C. V.
,
Kelly
,
A.-M.
, and
Williams
,
A.
,
2001
, “
Determining the Minimum Clinically Significant Difference in Visual Analog Pain Score for Children
,”
Ann. Emerg. Med.
,
37
(
1
), pp.
28
31
.10.1067/mem.2001.111517
You do not currently have access to this content.