Graphical Abstract Figure

Reprocessing event classification by threshold duration in a low-power sensor module.

Graphical Abstract Figure

Reprocessing event classification by threshold duration in a low-power sensor module.

Close modal

Abstract

This paper presents the design and evaluation of an integrable low-power electronic module that can be used to detect and classify reprocessing events of reusable medical devices. This is a novel approach for improving maintenance strategies and supporting device fleet management. A systematic development approach is used for the design of a compact and resilient electronic module. It includes low-power electronic components, while the mechanical design ensures a seamless integration into cylindrical medical instruments. An algorithm is developed, supporting ultralow power consumption, to classify the reprocessing events based on temperature thresholds and timestamps. Experimental characterization evaluates the module's classification capability, its resilience, and power consumption. The results demonstrate correct classification results for diverse reprocessing events, including short and long steam sterilization and automatic washer disinfection procedures. In addition, the module proves to withstand 400 steam sterilization cycles and is potentially able to operate independently for over a year on primary batteries. By this the module can improve device reliability by an independent, internal detection and classification of reprocessing cycles. This enables proactive maintenance and supports reducing unexpected equipment failures. This advancement helps to reduce total cost of device ownership and to achieve better healthcare outcomes by ensuring properly maintained medical devices.

References

1.
Rutala
,
W. A.
, and
Weber
,
D. J.
,
2024
, “
Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008
,”
CDC
, Chapel Hill, NC, accessed Dec. 19, 2024, https://www.cdc.gov/infection-control/hcp/disinfection-and-sterilization/index.html
2.
Wallhäusser
,
K. H.
,
Kramer
,
A.
, and
Assadian
,
O.
,
2008
, “
Wallhäußers Praxis Der Sterilisation, Desinfektion, Antiseptik Und Konservierung – Qualitätssicherung Der Hygiene in Industrie, Pharmazie Und Medizin
,”
Krankenhaushygiene up2date
,
3
, pp.
196
201
.10.1055/s-0028-1119450
3.
Boehler
,
L.
,
Daniol
,
M.
,
Sroka
,
R.
,
Osinski
,
D.
, and
Keller
,
A.
,
2021
, “
Sensors in the Autoclave-Modelling and Implementation of the Iot Steam Sterilization Procedure Counter
,”
Sensors
,
21
(
2
), pp.
510
517
.10.3390/s21020510
4.
Callebaut
,
G.
,
Leenders
,
G.
,
Van Mulders
,
J.
,
Ottoy
,
G.
,
De Strycker
,
L.
, and
Van der Perre
,
L.
,
2021
, “
The Art of Designing Remote IoT Devices—Technologies and Strategies for a Long Battery Life
,”
Sensors
,
21
(
3
), p.
913
.10.3390/s21030913
5.
George
,
J.
,
Compagno
,
T.
,
Waldron
,
F.
, and
Barrett
,
J.
,
2012
, “
Reliability Analysis of Plastic Encapsulated Coin Batteries Under Harsh Environmental Conditions
,”
2012 4th Electronic System-Integration Technology Conference
, Amsterdam, The Netherlands, Sept. 17–20, pp.
1
3
.10.1109/ESTC.2012.6542109
6.
Reverter
,
F.
,
2020
, “
Toward Non-CPU Activity in Low-Power MCU-Based Measurement Systems
,”
IEEE Trans. Instrum. Meas.
,
69
(
1
), pp.
15
17
.10.1109/TIM.2019.2953374
7.
Polonelli
,
T.
,
2021
, “
Ultra-Low Power IoT Applications: From Transducers to Wireless Protocols
,”
Ph.D. thesis
,
Università di Bologna
,
Bologna, Italy
.https://amsdottorato.unibo.it/id/eprint/9604/1/Polonelli_Tommaso_tesi.pdf
8.
Mayer
,
P.
,
Magno
,
M.
, and
Benini
,
L.
,
2021
, “
Smart Power Unit - MW-to-nW Power Management and Control for Self-Sustainable IoT Devices
,”
IEEE Trans. Power Electron.
,
36
(
5
), pp.
5700
5710
.10.1109/TPEL.2020.3031697
9.
Radfar
,
M.
,
Nakhlestani
,
A.
,
Viet
,
H. L.
, and
Desai
,
A.
,
2020
, “
Battery Management Technique to Reduce Standby Energy Consumption in Ultra-Low Power IoT and Sensory Applications
,”
IEEE Trans. Circuits Syst.
,
67
(
1
), pp.
336
345
.10.1109/TCSI.2019.2940022
10.
Daniol
,
M.
,
Böhler
,
L.
,
Keller
,
A.
, and
Sroka
,
R.
,
2019
, “
Autoclave Sterilization Powered Medical IoT Sensor Systems
,”
Methods and Techniques of Signal Processing in Physical Measurements
,
R.
Hanus
,
D.
Mazur
, and
C.
Kreischer
, eds.,
Springer International Publishing
,
Cham, Zug, Switzerland
, pp.
31
43
.10.1007/978-3-030-11187-8
11.
Daniol
,
M.
,
Boehler
,
L.
,
Sroka
,
R.
, and
Keller
,
A.
,
2020
, “
Modeling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node
,”
Sensors
,
20
(
21
), p.
6338
.10.3390/s20216338
12.
George
,
J.
, and
Barrett
,
J.
,
2019
, “
A Steam Sterilizable Plastic-Encapsulated Wireless Sensor Module
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
9
(
4
), pp.
770
778
.10.1109/TCPMT.2019.2898668
13.
Jubin
,
S. E.
,
Sikora
,
A.
,
Schappacher
,
M.
, and
Amjad
,
Z.
,
2019
, “
Test and Measurement of LPWAN and Cellular IoT Networks in a Unified Testbed
,”
2019 IEEE 17th International Conference on Industrial Informatics
(
INDIN
), Helsinki, Finland, July 22–25, Vol.
1
, pp.
1521
1527
.10.1109/INDIN41052.2019.8972256
14.
Texas Instruments
, “
Datasheet, TPS2116, PowerMux
,” Datasheet SLVSFG1A,
Texas Instruments
, Dallas, TX, accessed Aug. 5,
2024
, https://www.ti.com/product/de-de/TPS2116
15.
Infineon Technologies
, “
Datasheet, CY15B108QN, FRAM
,” Datasheet 002-21761 Rev. *L,
Infineon Technologies
, Neubiberg, Bayern, Germany, accessed Aug. 5,
2024
, https://www.infineon.com/cms/en/product/memories/f-ram-ferroelectric-ram/excelon-f-ram/cy15b108qn-40sxi/
16.
Micro Crystal
, “
Datasheet, RV-3028-C7, RTC
,” Datasheet Version 1.3 09.2021,
Micro Crystal
, Grenchen, Solothurn, Switzerland, accessed Aug. 5,
2024
, https://www.microcrystal.com/en/products/real-time-clock-rtc-modules/rv-3028-c7
17.
Ablic
, “
Datasheet, S-5844A-Serires, Thermostat
,” Datasheet Rev.2.7,
Ablic
, Minato-ku, Tokyo, Japan, accessed Aug. 5,
2024
, https://www.ablic.com/en/semicon/datasheets/sensor/temperature-sensor-ic/s-5844a/
18.
Texas Instruments
, “
Datasheet, TPS62840, Step-Down Converter
,” Datasheet SLVSEC6D,
Texas Instruments
, Dallas, TX, accessed Aug. 5,
2024
, https://www.ti.com/product/TPS62840
19.
Texas Instruments
, “
Datasheet, CC1352P7
,” Datasheet CC1352P7 SWRS251A,
Texas Instruments
, Dallas, TX, accessed Aug. 5,
2024
, https://www.ti.com/product/CC1352P7
20.
Panasonic
, “
Datasheet, BR1225, Primary Lithium Batteries
,” Datasheet BR1225 Datasheet EN 240701,
Panasonic Energy
, Moriguchi-shi, Osaka, Japan, accessed Dec. 18,
2024
, https://energy.panasonic.com/dam/master/pdf/en/datasheet/lithium/BR1225A_Datasheet_EN_240701.pdf
You do not currently have access to this content.