Graphical Abstract Figure

A systematic development framework of flexible needle puncture technology.

Graphical Abstract Figure

A systematic development framework of flexible needle puncture technology.

Close modal

Abstract

Percutaneous puncture is a minimally invasive surgery for early cancer screening and treatment. The flexible puncture needle can bypass obstacles within human tissue and stab at the target point through a predetermined path, reducing the surgical risk and increasing the puncture needle's reachable range. This paper employs a method of summarization, induction, and deduction. Incorporating exemplary works and application needs, it discusses the flexible needle's development process and forecasts the future directions of development. This paper reviews the development of flexible needles from five aspects: needle–tissue interaction models, needle path planning and control, flexible needle sensing, novel needle designs, and robotic-assisted puncture equipment. It discusses outstanding theoretical models of flexible puncture needles, scientific working methods, and innovative design concepts. The advantages and disadvantages of flexible needle puncture related work are summarized. Propose the key problems and prospects for the future development of flexible needle puncture technology.

References

1.
Visvanathan
,
K.
,
Li
,
T.
, and
Gianchandani
,
Y. B.
,
2012
, “
A Biopsy Tool With Integrated Piezoceramic Elements for Needle Tract Cauterization and Cauterization Monitoring
,”
Biomed. Microdevices
,
14
(
1
), pp.
55
65
.10.1007/s10544-011-9585-8
2.
Lopota
,
A. V.
,
Gryaznov
,
N. A.
,
Velichko
,
O. V.
,
Senchik
,
K. Y.
,
Kharlamov
,
V. V.
,
Nikitin
,
S. A.
, and
Kireeva
,
G. S.
,
2016
, “
The Existing Methods for Motion Control of Flexible Needles Along a Curved Path as Part of Robotic Systems for Brachytherapy
,”
Am. J. Appl. Sci.
,
13
(
1
), pp.
73
79
.10.3844/ajassp.2016.73.79
3.
Karagkounis
,
G.
,
Akyuz
,
M.
,
Guerron
,
A. D.
,
Yazici
,
P.
,
Aucejo
,
F. N.
,
Quintini
,
C.
,
Miller
,
C. M.
,
Vogt
,
D. P.
,
Fung
,
J. J.
, and
Berber
,
E.
,
2016
, “
Perioperative and Oncologic Outcomes of Minimally Invasive Liver Resection for Colorectal Metastases: A Case-Control Study of 130 Patients
,”
Surgery
,
160
(
4
), pp.
1097
1103
.10.1016/j.surg.2016.04.043
4.
DiMaio
,
S.
, and
Salcudean
,
S.
,
2003
, “
Needle Steering and Model-Based Trajectory Planning
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2003
, Pt. 1 (Lecture Notes in Computer Science, Vol.
2878
),
Montreal, QC, Canada
, pp.
33
40
.
5.
Zhao
,
Y.-J.
,
Liu
,
Z.-H.
,
Zhang
,
Y.-D.
, and
Liu
,
Z. Q.
,
2019
, “
Kinematic Model and Its Parameter Identification for Cannula Flexible Needle Insertion Into Soft Tissue
,”
Adv. Mech. Eng.
,
11
(
6
), p.
168781401985218
.10.1177/1687814019852185
6.
Glozman
,
D.
, and
Shoham
,
M.
,
2004
, “
Flexible Needle Steering and Optimal Trajectory Planning for Percutaneous Therapies
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI
, Lecture Notes in Computer Science, Vol.
3217
,
Springer
,
Berlin, Heidelberg
, pp.
137
144
.10.1007/978-3-540-30136-3_18
7.
Wang
,
L.
,
Gao
,
D.
,
Fu
,
J.
,
Luo
,
Y.
, and
Zhao
,
S.
,
2020
, “
Simulation of Coupling Process of Flexible Needle Insertion Into Soft Tissue Based on Abaqus
,”
CMC-Comput. Mater. Continua
,
64
(
2
), pp.
1153
1169
.10.32604/cmc.2020.010073
8.
Zhao
,
Y.
,
Fang
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
R.
,
2020
, “
Study on Bending Modeling of Cannula Flexible Needle Inserting Into Soft Tissue Based on Finite Element Method
,”
Chin. J. Sci. Instrum.
,
41
(
3
), pp.
202
211
.10.19650/j.cnki.cjsi.J1905790
9.
DiMaio
,
S.
, and
Salcudean
,
S.
,
2005
, “
Needle Steering and Motion Planning in Soft Tissues
,”
IEEE Trans. Biomed. Eng.
,
52
(
6
), pp.
965
974
.10.1109/TBME.2005.846734
10.
Wu
,
K.
,
Li
,
B.
,
Zhang
,
Y.
, and
Dai
,
X.
,
2022
, “
Review of Research on Path Planning and Control Methods of Flexible Steerable Needle Puncture Robot
,”
Comput. Assisted Surg.
,
27
(
1
), pp.
91
112
.10.1080/24699322.2021.2023647
11.
Lu
,
M.
,
Zhang
,
Y.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2023
, “
Flexible Needle Steering With Tethered and Untethered Actuation: Current States, Targeting Errors, Challenges and Opportunities
,”
Ann. Biomed. Eng.
,
51
(
5
), pp.
905
924
.10.1007/s10439-023-03163-8
12.
Xu
,
J.
,
Duindam
,
V.
,
Alterovitz
,
R.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning for Steerable Needles in 3D Environments With Obstacles Using Rapidly-Exploring Random Trees and Backchaining
,”
2008 IEEE International Conference on Automation Science and Engineering
, Vols.
1 and 2
, Arlington, VA, Aug. 23--26, p.
41
+.10.1109/COASE.2008.4626486
13.
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2011
, “
Robot-Assisted Needle Steering Using a Control Theoretic Approach
,”
J. Intell. Rob. Syst.
,
62
(
3–4
), pp.
397
418
.10.1007/s10846-010-9455-2
14.
Tan
,
X.
,
Lee
,
Y.
,
Chng
,
C.-B.
,
Lim
,
K.-B.
, and
Chui
,
C.-K.
,
2020
, “
Robot-Assisted Flexible Needle Insertion Using Universal Distributional Deep Reinforcement Learning
,”
Int. J. Comput. Assisted Radiol. Surg.
,
15
(
2
), pp.
341
349
.10.1007/s11548-019-02098-7
15.
Cai
,
C.
,
Sun
,
C.
,
Han
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Clinical Flexible Needle Puncture Path Planning Based on Particle Swarm Optimization
,”
Comput. Methods Programs Biomed.
,
193
, p.
105511
.10.1016/j.cmpb.2020.105511
16.
Berg
,
N. J.
,
Dankelman
,
J.
, and
Dobbelsteen
,
J. J.
,
2015
, “
Design of an Actively Controlled Steerable Needle With Tendon Actuation and FBG-Based Shape Sensing
,”
Med. Eng. Phys.
,
37
(
6
), pp.
617
622
.10.1016/j.medengphy.2015.03.016
17.
Ko
,
S. Y.
,
Frasson
,
L.
, and
Rodriguez y Baena
,
F.
,
2011
, “
Closed-Loop Planar Motion Control of a Steerable Probe With a Programmable Bevel Inspired by Nature
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
970
983
.10.1109/TRO.2011.2159411
18.
Webster
,
R. J.
, III
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.10.1177/0278364906065388
19.
Boctor
,
E. M.
,
Choti
,
M. A.
,
Burdette
,
E. C.
, and
Webster
,
R. J.
,
2008
, “
Three-Dimensional Ultrasound-Guided Robotic Needle Placement: An Experimental Evacuation
,“
Int. J. Med. Robot. Comp.
,
4
(
2
), pp.
180
191
.10.1002/rcs.184
20.
Rossa
,
C.
, and
Tavakoli
,
M.
,
2017
, “
Issues in Closed-Loop Needle Steering
,”
Control Eng. Pract.
,
62
, pp.
55
69
.10.1016/j.conengprac.2017.03.004
21.
Li
,
P.
,
Jiang
,
S.
,
Liang
,
D.
,
Yang
,
Z.
,
Yu
,
Y.
, and
Wang
,
W.
,
2017
, “
Modeling of Path Planning and Needle Steering With Path Tracking in Anatomical Soft Tissues for Minimally Invasive Surgery
,”
Med. Eng. Phys.
,
41
, pp.
35
45
.10.1016/j.medengphy.2017.01.006
22.
Asadian
,
A.
,
Kermani
,
M.
, and
Patel
,
R.
,
2011
, “
An Analytical Model for Deflection of Flexible Needles During Needle Insertion
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011)
, San Francisco, CA, Sept. 25--30, pp.
2551
2556
.10.1109/IROS.2011.6094959
23.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting In-Plane Needle Deflection With Multiple Bends
,”
Proceedings of the 2012 Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB)
, Rome, Italy, June 24–27, pp.
69
74
.10.1109/BIOROB.2012.6290829
24.
Khadem
,
M.
,
Fallahi
,
B.
,
Rossa
,
C.
,
Sloboda
,
R. S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2015
, “
A Mechanics-Based Model for Simulation and Control of Flexible Needle Insertion in Soft Tissue
,”
2015 IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26--30, pp.
2264
2269
.10.1109/ICRA.2015.7139499
25.
Jiang
,
S.
, and
Wang
,
X.
,
2016
, “
Mechanics-Based Interactive Modeling for Medical Flexible Needle Insertion in Consideration of Nonlinear Factors
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011004
.10.1115/1.4030747
26.
Dong
,
W.
,
Han
,
H.
, and
Du
,
Z.
,
2012
, “
The Tip Interface Mechanics Modeling of a Bevel-Tip Flexible Needle Insertion
,”
2012 IEEE International Conference on Mechatronics and Automation
(
ICMA
), Chengdu, China, Aug. 5--8, pp.
581
586
.10.1109/ICMA.2012.6283172
27.
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2012
, “
A Novel Force Modeling Scheme for Needle Insertion Using Multiple Kalman Filters
,”
IEEE Trans. Instrum. Meas.
,
61
(
2
), pp.
429
438
.10.1109/TIM.2011.2169178
28.
Martsopoulos
,
A.
,
Hill
,
T. L.
,
Persad
,
R.
,
Bolomytis
,
S.
, and
Tzemanaki
,
A.
,
2023
, “
Modelling and Real-Time Dynamic Simulation of Flexible Needles for Prostate Biopsy and Brachytherapy
,”
Math. Comput. Modell. Dyn. Syst.
,
29
(
1
), pp.
1
40
.10.1080/13873954.2022.2158875
29.
Terzano
,
M.
,
Dini
,
D.
,
Rodriguez y Baena
,
F.
,
Spagnoli
,
A.
, and
Oldfield
,
M.
,
2020
, “
An Adaptive Finite Element Model for Steerable Needles
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1809
1825
.10.1007/s10237-020-01310-x
30.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2016
, “
A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue
,”
IEEE-ASME Trans. Mechatron.
,
21
(
5
), pp.
2352
2364
.10.1109/TMECH.2016.2549505
31.
Wang
,
Y.
,
Kwok
,
K.-W.
,
Cleary
,
K.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2023
, “
Flexible Needle Bending Model for Spinal Injection Procedures
,”
IEEE Rob. Autom. Lett.
,
8
(
3
), pp.
1343
1350
.10.1109/LRA.2023.3239310
32.
Joldes
,
G.
,
Bourantas
,
G.
,
Zwick
,
B.
,
Chowdhury
,
H.
,
Wittek
,
A.
,
Agrawal
,
S.
,
Mountris
,
K.
,
Hyde
,
D.
,
Warfield
,
S. K.
, and
Miller
,
K.
,
2019
, “
Suite of Meshless Algorithms for Accurate Computation of Soft Tissue Deformation for Surgical Simulation
,”
Med. Image Anal.
,
56
, pp.
152
171
.10.1016/j.media.2019.06.004
33.
Adagolodjo
,
Y.
,
Goffin
,
L.
,
De Mathelin
,
M.
, and
Courtecuisse
,
H.
,
2019
, “
Robotic Insertion of Flexible Needle in Deformable Structures Using Inverse Finite-Element Simulation
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
697
708
.10.1109/TRO.2019.2897858
34.
Dehghan
,
M. R.
,
Rahimi
,
A.
,
Talebi
,
H. A.
, and
Zareinejad
,
M.
,
2016
, “
A Three-Dimensional Large Deformation Model for Soft Tissue Using Meshless Method
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
12
(
2
), pp.
241
253
.10.1002/rcs.1682
35.
Engh
,
J. A.
,
Podnar
,
G.
,
Khoo
,
S. Y.
, and
Riviere
,
C. N.
,
2006
, “
Flexible Needle Steering System for Percutaneous Access to Deep Zones of the Brain
,”
Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference
, Easton, PA, Apr. 1--2, pp. 103--104.10.1109/NEBC.2006.1629773
36.
Tsumura
,
R.
,
Takishita
,
Y.
,
Fukushima
,
Y.
, and
Iwata
,
H.
,
2016
, “
Histological Evaluation of Tissue Damage Caused by Rotational Needle Insertion
,”
Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Orlando, FL, Aug. 16–20, pp.
5120
5123
.10.1109/EMBC.2016.7591879
37.
Reed
,
K. B.
,
Majewicz
,
A.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldberg
,
K.
,
Cowan
,
N. J.
, and
Okamura
,
A. M.
,
2011
, “
Robot-Assisted Needle Steering
,”
IEEE Rob. Autom. Mag.
,
18
(
4)
, pp.
35
46
.10.1109/MRA.2011.942997
38.
Wartenberg
,
M.
,
Schornak
,
J.
,
Carvalho
,
P.
,
Patel
,
N.
, and
Fischer
,
G. S.
,
2017
, “
Closed-Loop Autonomous Needle Steering During Cooperatively Controlled Needle Insertions for MRI-Guided Pelvic Interventions
,”
The Hamlyn Symposium
, London, UK, June 25–28, pp. 33--34.
39.
Behera
,
B.
,
Orlando
,
M. F.
, and
Anand
,
R. S.
,
2024
, “
Prognosis of Tissue Stiffness Through Multilayer Perceptron Technique With Adaptive Learning Rate in Minimal Invasive Surgical Procedures
,”
IEEE Trans. Med. Rob. Bionics
,
6
(
2
), pp.
769
781
.10.1109/TMRB.2024.3377371
40.
Hans
,
S.
, and
Joseph
,
F. O. M.
,
2020
, “
Robust Control of a Bevel-Tip Needle for Medical Interventional Procedures
,”
IEEE-CAA J. Autom. Sin.
,
7
(
1
), pp.
244
256
.10.1109/JAS.2019.1911660
41.
Halder
,
K.
, and
Orlando
,
M. F.
,
2024
, “
Needle Steering Controller Design for Flexible Steerable Needle Utilizing Robust Backstepping Control Strategy
,”
IEEE Trans. Med. Rob. Bionics
,
6
(
3
), pp.
1256
1269
.10.1109/TMRB.2024.3421593
42.
Lou
,
D.-K.
,
Zhang
,
D.
, and
Liang
,
H.-G.
,
2023
, “
An Improved High-Gain Observer Design for Flexible Needle Steering
,”
IEEE Trans. Circuits Syst. II-Express Briefs
,
70
(
9
), pp.
3489
3493
.10.1109/TCSII.2023.3251656
43.
Zhao
,
Y.-J.
,
Zhang
,
H.
,
Du
,
H.-Y.
,
Qian
,
C.
,
Jin
,
Y.-X.
,
Chen
,
Y.
, and
Yang
,
G.-Z.
,
2025
, “
Path Planning for Flexible Needle Based on Both Insertion Mechanism Kinematics and Needle Bending Model
,”
Phys. Med. Biol.
,
70
(
1
), p.
015016
.10.1088/1361-6560/ada0a1
44.
Zhao
,
B.
,
Lei
,
L.
,
Xu
,
L.
,
Li
,
S.
,
Hu
,
Y.
,
Zhang
,
J.
,
Yang
,
X.
, and
Zhang
,
Y.
,
2021
, “
Needle Deflection Modeling and Preoperative Trajectory Planning During Insertion Into Multilayered Tissues
,”
IEEE-ASME Trans. Mechatron.
,
26
(
2
), pp.
943
954
.10.1109/TMECH.2020.3013708
45.
Shah
,
M.
, and
Patel
,
N.
,
2023
, “
FNPG-NH: A Reinforcement Learning Framework for Flexible Needle Path Generation With Nonholonomic Constraints
,”
IEEE Rob. Autom. Lett.
,
8
(
9
), pp.
5854
5861
.10.1109/LRA.2023.3300576
46.
Li
,
M.
,
Gao
,
D.
,
Lei
,
Y.
, and
Xu
,
T.
,
2020
, “
Dynamic Path Planning for Bevel-Tip Flexible Needle Insertion Into Soft Tissue Based on a Real-Time Finite Element Model
,”
Math. Probl. Eng.
,
2020
, pp.
1
13
.10.1155/2020/4512409
47.
Alterovitz
,
R.
,
Branicky
,
M.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning Under Uncertainty for Image-Guided Medical Needle Steering
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1361
1374
.10.1177/0278364908097661
48.
Alterovitz
,
R.
,
Goldberg
,
K. Y.
,
Pouliot
,
J.
, and
Hsu
,
I.-C.
,
2009
, “
Sensorless Motion Planning for Medical Needle Insertion in Deformable Tissues
,”
IEEE Trans. Inf. Technol. Biomed.
,
13
(
2
), pp.
217
225
.10.1109/TITB.2008.2008393
49.
Yanjiang
,
Z.
,
Yanhua
,
Z.
,
Hao
,
C.
,
Yongde
,
Z.
, and
Yu
,
Y.
,
2013
, “
2D Path Optimization for Flexible Needle Based on Combination of Multiform Paths
,”
China Mech. Eng.
,
24
(
1
), pp.
6
11
.10.3969/j.issn.1004-132X.2013.01.002
50.
Benyan
,
H.
,
Xingang
,
Z.
,
Jianda
,
H.
, and
Weiliang
,
X.
,
2015
, “
Puncture Path Planning for Bevel-Tip Flexible Needle Based on Multi-Objective Particle Swarm Optimization Algorithm
,”
Robot
,
37
(
4
), pp.
385
394
.10.13973/j.cnki.robot.2015.0385
51.
Tan
,
Z.
,
Zhang
,
D.
,
Liang
,
H.-G.
,
Wang
,
Q.-G.
, and
Cai
,
W.
,
2022
, “
A New Path Planning Method for Bevel-Tip Flexible Needle Insertion in 3D Space With Multiple Targets and Obstacles
,”
Control Theory Technol.
,
20
(
4
), pp.
525
535
.10.1007/s11768-022-00113-y
52.
Sadati
,
N.
, and
Torabi
,
M.
,
2009
, “
Adaptive 2D-Path Optimization of Steerable Bevel-Tip Needles in Uncertain Model of Brain Tissue
,”
2009 WRI World Congress on Computer Science and Information Engineering (CSIE)
,
Los Angeles, CA
, Mar. 31–Apr. 2, pp.
254
–2
60
.10.1109/CSIE.2009.855
53.
Zhao
,
B.
,
Shao
,
S.
,
Lei
,
L.
,
Wang
,
X.
,
Yang
,
X.
,
Wang
,
Q.
, and
Hu
,
Y.
,
2022
, “
Curve Fitting-Based Dynamic Path Planning and Tracking Control for Flexible Needle Insertion
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
2
), pp.
436
447
.10.1109/TMRB.2022.3170945
54.
Patil
,
S.
,
Burgner
,
J.
,
Webster
,
R. J.
, III
, and
Alterovitz
,
R.
,
2014
, “
Needle Steering in 3-D Via Rapid Replanning
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
853
864
.10.1109/TRO.2014.2307633
55.
Hong
,
A.
,
Boehler
,
Q.
,
Moser
,
R.
,
Zemmar
,
A.
,
Stieglitz
,
L.
, and
Nelson
,
B. J.
,
2019
, “
3D Path Planning for Flexible Needle Steering in Neurosurgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
15
(
4
), p.
e1998
.10.1002/rcs.1998
56.
Abayazid
,
M.
,
Vrooijink
,
G. J.
,
Patil
,
S.
,
Alterovitz
,
R.
, and
Misra
,
S.
,
2014
, “
Experimental Evaluation of Ultrasound-Guided 3D Needle Steering in Biological Tissue
,”
Int. J. Comput. Assisted Radiol. Surg.
,
9
(
6
), pp.
931
939
.10.1007/s11548-014-0987-y
57.
Zhao
,
Y.-J.
,
Konh
,
B.
,
Honarvar
,
M.
,
Joseph
,
F.
,
Podder
,
T.
,
Hutapea
,
P.
,
Dicker
,
A.
, and
Yu
,
Y.
,
2015
, “
3D Motion Planning for Robot-Assisted Active Flexible Needle Based on Rapidly-Exploring Random Trees
,”
J. Autom. Control Eng.
,
3
(
5
), pp.
360
367
.10.12720/joace.3.5.360-367
58.
Bernardes
,
M. C.
,
Adorno
,
B. V.
,
Borges
,
G. A.
, and
Poignet
,
P.
,
2014
, “
3D Robust Online Motion Planning for Steerable Needles in Dynamic Workspaces Using Duty-Cycled Rotation
,”
J. Control, Autom. Electr. Syst.
,
25
(
2
), pp.
216
227
.10.1007/s40313-013-0104-4
59.
Zhang
,
Y.
,
Ju
,
Z.
,
Zhang
,
H.
, and
Qi
,
Z.
,
2022
, “
3-D Path Planning Using Improved RRT Algorithm for Robot-Assisted Flexible Needle Insertion in Multilayer Tissues
,”
IEEE Can. J. Electr. Comput. Eng.
,
45
(
1
), pp.
50
62
.10.1109/ICJECE.2021.3120324
60.
Zhang
,
Y.-D.
,
Shi
,
K.-M.
,
Zhao
,
Y.-J.
,
Yang
,
J. C.
, and
Liu
,
J.
,
2018
, “
Path Optimization Algorithm and Its Robustness for Bevel Tip Flexible Needle
,”
Int. J. Adv. Rob. Syst.
,
15
(
5
), p.
172988141880116
.10.1177/1729881418801166
61.
Huang
,
Y.
, and
Zhang
,
F.
,
2024
, “
Variable Curvature Path Planning for Robot-Assisted Flexible Needle Insertion Based on Improved Bi-RRT Algorithm
,”
IEEE Trans. Instrum. Meas.
,
73
, pp.
1
14
.10.1109/TIM.2024.3373067
62.
Lezcano
,
D. A.
,
Zhetpissov
,
Y.
,
Bernardes
,
M. C.
,
Moreira
,
P.
,
Tokuda
,
J.
,
Kim
,
J. S.
, and
Iordachita
,
I. I.
,
2024
, “
Hybrid Deep Learning and Model-Based Needle Shape Prediction
,”
IEEE Sens. J.
,
24
(
11
), pp.
18359
18371
.10.1109/JSEN.2024.3386120
63.
Moreira
,
P.
, and
Misra
,
S.
,
2015
, “
Biomechanics-Based Curvature Estimation for Ultrasound-Guided Flexible Needle Steering in Biological Tissues
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1716
1726
.10.1007/s10439-014-1203-5
64.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2017
, “
Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
924
938
.10.1007/s10439-016-1736-x
65.
Hungr
,
N.
,
Baumann
,
M.
,
Long
,
J.-A.
, and
Troccaz
,
J.
,
2012
, “
A 3-D Ultrasound Robotic Prostate Brachytherapy System With Prostate Motion Tracking
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1382
1397
.10.1109/TRO.2012.2203051
66.
Vrooijink
,
G. J.
,
Abayazid
,
M.
,
Patil
,
S.
,
Alterovitz
,
R.
, and
Misra
,
S.
,
2014
, “
Needle Path Planning and Steering in a Three-Dimensional Nonstatic Environment Using Two-Dimensional Ultrasound Images
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1361
1374
.10.1177/0278364914526627
67.
Li
,
Z.
,
Song
,
S.
,
Liu
,
L.
, and
Meng
,
M. Q. H.
,
2019
, “
Tip Estimation Method in Phantoms for Curved Needle Using 2D Transverse Ultrasound Images
,”
Appl. Sci.-Basel
,
9
(
24
), p.
5305
.10.3390/app9245305
68.
Li
,
T.
,
Zeng
,
Q.
,
Li
,
J.
,
Qian
,
C.
,
Yu
,
H.
,
Lu
,
J.
,
Zhang
,
Y.
, and
Zhou
,
S.
,
2024
, “
An Adaptive Control Method and Learning Strategy for Ultrasound-Guided Puncture Robot
,”
Electronics
,
13
(
3
), p.
580
.10.3390/electronics13030580
69.
Kaya
,
M.
,
Senel
,
E.
, and
Bebek
,
O.
,
2020
, “
Gabor Filter-Based Localization of Straight and Curved Needles in 2D Ultrasound Images
,”
Turk. J. Electr. Eng. Comput. Sci.
,
28
(
5
), pp.
2940
2955
.10.3906/elk-1912-181
70.
Uhercik
,
M.
,
Kybic
,
J.
,
Liebgott
,
H.
, and
Cachard
,
C.
,
2010
, “
Model Fitting Using RANSAC for Surgical Tool Localization in 3-D Ultrasound Images
,”
IEEE Trans. Biomed. Eng.
,
57
(
8
), pp.
1907
1916
.10.1109/TBME.2010.2046416
71.
Mignon
,
P.
,
Poignet
,
P.
, and
Troccaz
,
J.
,
2018
, “
Automatic Robotic Steering of Flexible Needles From 3D Ultrasound Images in Phantoms and Ex-Vivo Biological Tissue
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1385
1396
.10.1007/s10439-018-2061-3
72.
Zhao
,
Y.-J.
,
Wen
,
C.
,
Zhang
,
Y.-D.
, and
Zhang
,
H.
,
2022
, “
Needle Tip Pose Estimation for Ultrasound-Guided Steerable Flexible Needle With a Complicated Trajectory in Soft Tissue
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11705
11712
.10.1109/LRA.2022.3196465
73.
Lezcano
,
D. A.
,
Iordachita
,
I. I.
, and
Kim
,
J. S.
,
2022
, “
Lie-Group Theoretic Approach to Shape-Sensing Using FBG-Sensorized Needles Including Double-Layer Tissue and S-Shape Insertions
,”
IEEE Sens. J.
,
22
(
22
), pp.
22232
22243
.10.1109/JSEN.2022.3212209
74.
Park
,
Y.-L.
,
Elayaperumal
,
S.
,
Daniel
,
B.
,
Ryu
,
S. C.
,
Shin
,
M.
,
Savall
,
J.
,
Black
,
R. J.
,
Moslehi
,
B.
, and
Cutkosky
,
M. R.
,
2010
, “
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions
,”
IEEE-ASME Trans. Mechatron.
,
15
(
6
), pp.
906
915
.10.1109/TMECH.2010.2080360
75.
Roesthuis
,
R. J.
,
Kemp
,
M.
,
van den Dobbelsteen
,
J. J.
, and
Misra
,
S.
,
2014
, “
Three-Dimensional Needle Shape Reconstruction Using an Array of Fiber Bragg Grating Sensors
,”
IEEE-ASME Trans. Mechatron.
,
19
(
4
), pp.
1115
1126
.10.1109/TMECH.2013.2269836
76.
Zhang
,
L.
,
Li
,
C.
,
Dong
,
H.
,
Liu
,
X.
,
Sun
,
T.
,
Grattan
,
K. T. V.
, and
Zhao
,
J.
,
2023
, “
Fiber Bragg Grating-Based Sensor System for Sensing the Shape of Flexible Needles
,”
Measurement
,
206
, p.
112251
.10.1016/j.measurement.2022.112251
77.
Abayazid
,
M.
,
Kemp
,
M.
, and
Misra
,
S.
,
2013
, “
3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors
,”
2013 IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, pp.
5843
5849
.10.1109/ICRA.2013.6631418
78.
Lezcano
,
D. A.
,
Kim
,
M. J.
,
Iordachita
,
I. I.
, and
Kim
,
J. S.
,
2022
, “
Toward FBG-Sensorized Needle Shape Prediction in Tissue Insertions
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Kyoto, Japan, Oct. 23--27, pp.
3505
3511
.10.1109/IROS47612.2022.9981856
79.
Zhang
,
B.
,
Chen
,
F.
,
Yang
,
M.
,
Huang
,
L.
,
Du
,
Z.
,
Sun
,
L.
, and
Dong
,
W.
,
2018
, “
Real-Time Curvature Detection of a Flexible Needle With a Bevel Tip
,”
Sensors
,
18
(
7
), p.
2057
.10.3390/s18072057
80.
Mo
,
Z.
,
Mao
,
X.
,
Hicks
,
K. O.
, and
Xu
,
W.
,
2018
, “
Tissue Identification on Mice Using a Fiber Optical Tip Force Sensing Needle
,”
IEEE Sens. J.
,
18
(
15
), pp.
6352
6359
.10.1109/JSEN.2018.2846780
81.
Beekmans
,
S. V.
, and
Iannuzzi
,
D.
,
2016
, “
Characterizing Tissue Stiffness at the Tip of a Rigid Needle Using an Opto-Mechanical Force Sensor
,”
Biomed. Microdevices
,
18
(
1
), p.
15
.10.1007/s10544-016-0039-1
82.
Piccin
,
O.
,
Barbe
,
L.
,
Bayle
,
B.
,
de Mathelin
,
M.
, and
Gangi
,
A.
,
2009
, “
A Force Feedback Teleoperated Needle Insertion Device for Percutaneous Procedures
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1154
1168
.10.1177/0278364909101408
83.
Beekmans
,
S.
,
Lembrechts
,
T.
,
van den Dobbelsteen
,
J.
, and
van Gerwen
,
D.
,
2016
, “
Fiber-Optic Fabry-Perot Interferometers for Axial Force Sensing on the Tip of a Needle
,”
Sensors
,
17
(
1
), p.
38
.10.3390/s17010038
84.
Mo
,
Z.
, and
Xu
,
W.
,
2016
, “
Temperature-Compensated Optical Fiber Force Sensing at the Tip of a Surgical Needle
,”
IEEE Sens. J.
,
16
(
24
), pp.
8936
8943
.10.1109/JSEN.2016.2619383
85.
Ambastha
,
S.
,
Umesh
,
S.
,
Dabir
,
S.
, and
Asokan
,
S.
,
2016
, “
Spinal Needle Force Monitoring During Lumbar Puncture Using Fiber Bragg Grating Force Device
,”
J. Biomed. Opt.
,
21
(
11
), p.
117002
.10.1117/1.JBO.21.11.117002
86.
Elayaperumal
,
S.
,
Bae
,
J. H.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2014
, “
Detection of Membrane Puncture With Haptic Feedback Using a Tip-Force Sensing Needle
,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
3975
3981
.10.1109/IROS.2014.6943121
87.
Uzun
,
D.
,
Ulgen
,
O.
, and
Kocaturk
,
O.
,
2020
, “
Optical Force Sensor With Enhanced Resolution for MRI Guided Biopsy
,”
IEEE Sens. J.
,
20
(
16
), pp.
9202
9208
.10.1109/JSEN.2020.2988816
88.
Wei
,
G.
, and
Jiang
,
Q.
,
2022
, “
A Temperature-Compensated Force Sensor Based on a Cascaded FPI for Needle Force Sensing
,”
Measurement
,
202
, p.
111748
.10.1016/j.measurement.2022.111748
89.
Berg
,
N. J.
,
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design Choices in Needle Steering—A Review
,”
IEEE-ASME Trans. Mechatron.
,
20
(
5
), pp.
2172
2183
.10.1109/TMECH.2014.2365999
90.
Secoli
,
R.
, and
Rodriguez y Baena
,
F.
,
2016
, “
Adaptive Path-Following Control for Bio-Inspired Steerable Needles
,”
Proceedings of the 2016 Sixth IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BIOROB
),
Singapore
, June 26--29, pp.
87
93
.10.1109/BIOROB.2016.7523603
91.
Lee
,
J.
,
Wang
,
J.
, and
Park
,
W.
,
2018
, “
Efficient Mechanism Design and Systematic Operation Planning for Tube-Wire Flexible Needles
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
065001
.10.1115/1.4041259
92.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2020
, “
Compact 3D-Printed Active Flexible Needle for Percutaneous Procedures
,”
Surg. Innovation
,
27
(
4
), pp.
402
405
.10.1177/1553350620945564
93.
De Falco
,
I.
,
Culmone
,
C.
,
Menciassi
,
A.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2018
, “
A Variable Stiffness Mechanism for Steerable Percutaneous Instruments: Integration in a Needle
,”
Med. Biol. Eng. Comput.
,
56
(
12
), pp.
2185
2199
.10.1007/s11517-018-1847-7
94.
Joseph
,
F. O. M.
, and
Podder
,
T.
,
2018
, “
Sliding Mode Control of a Shape Memory Alloy Actuated Active Flexible Needle
,”
Robotica
,
36
(
8
), pp.
1188
1205
.10.1017/S0263574718000334
95.
Karimi
,
S.
, and
Konh
,
B.
,
2022
, “
Kinematics Modelling and Dynamics Analysis of an SMA-Actuated Active Flexible Needle for Feedback-Controlled Manipulation in Phantom
,”
Med. Eng. Phys.
,
107
, p.
103846
.10.1016/j.medengphy.2022.103846
96.
Adebar
,
T. K.
,
Greer
,
J. D.
,
Laeseke
,
P. F.
,
Hwang
,
G. L.
, and
Okamura
,
A. M.
,
2016
, “
Methods for Improving the Curvature of Steerable Needles in Biological Tissue
,”
IEEE Trans. Biomed. Eng.
,
63
(
6
), pp.
1167
1177
.10.1109/TBME.2015.2484262
97.
Hong
,
A.
,
Petruska
,
A. J.
,
Zemmar
,
A.
, and
Nelson
,
B. J.
,
2021
, “
Magnetic Control of a Flexible Needle in Neurosurgery
,”
IEEE Trans. Biomed. Eng.
,
68
(
2
), pp.
616
627
.10.1109/TBME.2020.3009693
98.
Zhang
,
B.
,
2020
, “
Toward Robotic Puncture Based on Flexible Bevel-Tip Needle Insertion
,” Ph.D. thesis,
Harbin Institute of Technology
,
Harbin, China
.
99.
Padasdao
,
B.
, and
Konh
,
B.
,
2024
, “
A Mechanics-Based Model for a Tendon-Driven Active Needle Navigating Inside a Multiple-Layer Tissue
,”
J. Rob. Surg.
,
18
(
1
), p.
146
.10.1007/s11701-024-01900-2
100.
Petruska
,
A. J.
,
Ruetz
,
F.
,
Hong
,
A.
,
Regli
,
L.
,
Sueruecue
,
O.
,
Zemmar
,
A.
, and
Nelson
,
B. J.
,
2016
, “
Magnetic Needle Guidance for Neurosurgery: Initial Design and Proof of Concept
,”
2016 IEEE International Conference on Robotics and Automation
(
ICRA
),
Stockholm, Sweden
, May 16--21, pp.
4392
4397
.10.1109/ICRA.2016.7487638
101.
Sperry
,
A. J.
,
Schwehr
,
T. J.
,
Pinegar
,
E. K.
,
Richards
,
O. B.
,
Rolston
,
J. D.
,
Alexander
,
M. D.
,
Coats
,
B.
,
Abbott
,
J. J.
, and
Kuntz
,
A.
,
2024
, “
Screw-Tip Soft Magnetically Steerable Needles
,”
IEEE Trans. Med. Rob. Bionics
,
6
(
1
), pp.
4
17
.10.1109/TMRB.2023.3265721
102.
Li
,
H.
,
Wang
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Novel Manipulator With Needle Insertion Forces Feedback for Robot-Assisted Lumbar Puncture
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
17
(
2
), p.
e2226
.10.1002/rcs.2226
103.
Duan
,
X.-G.
,
Bian
,
G.-B.
,
Zhao
,
H.-H.
,
Wang
,
X.-T.
, and
Huang
,
Q.
,
2010
, “
A Medical Robot for Needle Placement Therapy in Liver Cancer
,”
J. Zhejiang Univ.-Sci. A
,
11
(
4
), pp.
263
269
.10.1631/jzus.A1000040
104.
Su
,
H.
,
Shang
,
W.
,
Li
,
G.
,
Patel
,
N.
, and
Fischer
,
G. S.
,
2017
, “
An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1917
1928
.10.1007/s10439-017-1839-z
105.
XACT Robotics System
,
2022
, “
The World's First and Only Comprehensive Robotic System
,”
XACT Robotics System
,
Caesarea, Israel
, accessed May 12, 2025, https://xactrobotics.com
106.
Li
,
J.
, and
Jiang
,
Q.
,
2023
, “
Optimal Design and Experiment of Cable-Driven Puncturing Surgery Robot for Soft Needle
,”
ASME J. Med. Devices
,
17
(
2
), p.
021008
.10.1115/1.4056865
107.
Micromate
,
2022
, “
Steering Your Path Towards Micro-Invasive Interventions
,” Micromate, Kitzbühel, Austria, accessed May 12, 2025, https://www.interventional-systems.com
108.
Webster
,
R.
,
Memisevic
,
J.
, and
Okamura
,
A.
,
2005
, “
Design Considerations for Robotic Needle Steering
,”
2005 IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18--22, pp.
3588
3594
.10.1109/ROBOT.2005.1570666
109.
Zhao
,
X.
,
Yang
,
T.
,
Han
,
J.
, and
Xu
,
W.
,
2013
, “
A Review on the Robot-Assisted Needle Puncture Technology
,”
Chin. J.
,
58
(
S2
), pp.
7
11
.10.1360/972013-952
110.
Walsh
,
C. J.
,
Hanumara
,
N. C.
,
Slocum
,
A. H.
,
Shepard
,
J.-A.
, and
Gupta
,
R.
,
2008
, “
A Patient-Mounted, Telerobotic Tool for CT-Guided Percutaneous Interventions
,”
ASME J. Med. Devices
,
2
(
1
), p.
011007
.10.1115/1.2902854
111.
Kobayashi
,
Y.
,
Onishi
,
A.
,
Watanabe
,
H.
,
Hoshi
,
T.
,
Kawamura
,
K.
,
Hashizume
,
M.
, and
Fujie
,
M. G.
,
2010
, “
Development of an Integrated Needle Insertion System With Image Guidance and Deformation Simulation
,”
Comput. Med. Imaging Graph.
,
34
(
1
), pp.
9
18
.10.1016/j.compmedimag.2009.08.008
112.
Yokouchi
,
K.
,
Kamegawa
,
T.
,
Matsuno
,
T.
,
Hiraki
,
T.
,
Yamaguchi
,
T.
, and
Gofuku
,
A.
,
2020
, “
Development of a Gripper With Variable Stiffness for a CT-Guided Needle Insertion Robot
,”
J. Rob. Mechatron.
,
32
(
3
), pp.
692
700
.10.20965/jrm.2020.p0692
113.
Martinez
,
R. M.
,
Ptacek
,
W.
,
Schweitzer
,
W.
,
Kronreif
,
G.
,
Fürst
,
M.
,
Thali
,
M. J.
, and
Ebert
,
L. C.
,
2014
, “
CT-Guided, Minimally Invasive, Postmortem Needle Biopsy Using the B-Rob II Needle-Positioning Robot
,”
J. Forensic Sci.
,
59
(
2
), pp.
517
521
.10.1111/1556-4029.12329
114.
Liu
,
W.
,
Yang
,
Z.
,
Jiang
,
S.
,
Feng
,
D.
, and
Zhang
,
D.
,
2020
, “
Design and Implementation of a New Cable-Driven Robot for MRI-Guided Breast Biopsy
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
16
(
2
), p.
e2063
.10.1002/rcs.2063
115.
Franco
,
E.
,
Brujic
,
D.
,
Rea
,
M.
,
Gedroyc
,
W. M.
, and
Ristic
,
M.
,
2016
, “
Needle-Guiding Robot for Laser Ablation of Liver Tumors Under MRI Guidance
,”
IEEE-ASME Trans. Mechatron.
,
21
(
2
), pp.
931
944
.10.1109/TMECH.2015.2476556
116.
Yu
,
Y.
,
Podder
,
T.
,
Zhang
,
Y.
,
Ng
,
W. S.
,
Misic
,
V.
,
Sherman
,
J.
,
Fu
,
L.
, et al.,
2006
, “
Robot-Assisted Prostate Brachytherapy
,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2006
, Pt. 1 (
Lecture Notes in Computer Science
, Vol.
4190
),
Copenhagen, Denmark
, pp.
41
49
.https://link.springer.com/book/10.1007/11866565
117.
Yuan
,
W.
,
2018
, “
Design and Analysis of CT Guided Thoracic Puncture Robot
,” Master's thesis,
TianJin University
, Tianjin, China, pp. 60–75.
118.
Zhou
,
C.
, and
Xu
,
X.
,
2017
, “
A Laser-Guided Stereotactic Robot for Percutaneous Surgery
,”
International Conference on Control, Automation and Robotics (ICCAR)
,
Nagoya, Japan
, Apr. 22–24, pp.
1123
1130
.
119.
Patel
,
N. A.
,
Yan
,
J.
,
Levi
,
D.
,
Monfaredi
,
R.
,
Cleary
,
K.
, and
Iordachita
,
I.
,
2018
, “
Body-Mounted Robot for Image-Guided Percutaneous Interventions: Mechanical Design and Preliminary Accuracy Evaluation
,”
IEEE International Conference on Intelligent Robots and Systems
, Madrid, Spain, Oct. 1--5, pp.
1443
1448
.10.1109/IROS.2018.8593807
120.
Li
,
Z.
,
Li
,
C.
,
Zhang
,
X.
,
Liu
,
G.
, and
Zhao
,
J.
,
2019
, “
The Robot System for Brachytherapy
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Hong Kong, China, July 8--12, pp.
25
29
.10.1109/AIM.2019.8868377
121.
Musa
,
M. J.
,
Sharma
,
K.
,
Cleary
,
K.
, and
Chen
,
Y.
,
2022
, “
Respiratory Compensated Robot for Liver Cancer Treatment: Design, Fabrication, and Benchtop Characterization
,”
IEEE-ASME Trans. Mechatron.
,
27
(
1
), pp.
268
279
.10.1109/TMECH.2021.3062984
122.
Lin
,
X.
,
Zhou
,
S.
,
Wen
,
T.
,
Jiang
,
S.
,
Wang
,
C.
, and
Chen
,
J.
,
2021
, “
A Novel Multi-DoF Surgical Robotic System for Brachytherapy on Liver Tumor: Design and Control
,”
Int. J. Comput. Assisted Radiol. Surg.
,
16
(
6
), pp.
1003
1014
.10.1007/s11548-021-02380-7
123.
Leipheimer
,
J.
,
Balter
,
M.
,
Chen
,
A.
, and
Yarmush
,
M.
,
2022
, “
Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization
,”
ASME J. Med. Devices
,
16
(
2
), p.
021015
.10.1115/1.4053688
You do not currently have access to this content.