Abstract

Endoscopic treatment is a widely employed clinical modality for the rapid reduction of cranial pressure in cases of intracerebral hemorrhage (ICH). We are working to make endoscopic surgery simpler and more effective by providing surgeons with robot and augmented reality (AR). This paper proposes an AR-based multi-optical and mechanical compensation robotic surgical system that can precisely match the virtual hematoma region with the anatomical structures seen under a robot-wielded neuroendoscope. The custom mark unified multi-optical localization system enables optical tracking over a wide range of angles and breadths. The neuroendoscope registration employs a multimodal error compensation approach based on an optical tracking system and the kinematic model of the robotic arm. Utilizing innovative methods, we register patients, medical images, optical localizers, and both neuroendoscopic and robotic coordinate systems, thereby enabling dual-view AR tracking through video-stream fusion. In multimodal error compensation for neuroendoscopic registration, the calibration error is 0.37 mm. The system's performance was evaluated through ten phantom experiments, showing the registration accuracy of 0.39±0.10 mm, optical localizer AR fusion accuracy of 3.30±1.08%, neuroendoscope AR fusion accuracy of 5.22±1.02%, and optical localizer AR average distance and angle accuracies of 1.73±0.21 mm and 0.38±0.13 deg, respectively. The AR-based robotic surgical system (ARSS) overlays virtual lesions onto the current endoscopic view of the real lesions in real-time, which can help surgeons to localize lesions hidden deep in tissue by an endoscopy. It is anticipated that the ARSS will reduce surgeon fatigue and improve the intuitiveness of endoscopic surgery.

References

1.
Pu
,
L.
,
Wang
,
L.
,
Zhang
,
R.
,
Zhao
,
T.
,
Jiang
,
Y.
, and
Han
,
L.
,
2023
, “
Projected Global Trends in Ischemic Stroke Incidence, Deaths and Disability-Adjusted Life Years From 2020 to 2030
,”
Stroke
,
54
(
5
), pp.
1330
1339
.10.1161/STROKEAHA.122.040073
2.
Paudel
,
R.
,
Tunkl
,
C.
,
Shrestha
,
S.
,
Subedi
,
R. C.
,
Adhikari
,
A.
,
Thapa
,
L.
,
Gajurel
,
B. P.
, et al.,
2023
, “
Stroke Epidemiology and Outcomes of Stroke Patients in Nepal: A Systematic Review and Meta-Analysis
,”
BMC Neurol.
,
23
(
1
), p.
337
.10.1186/s12883-023-03382-5
3.
Banda
,
K. J.
,
Chu
,
H.
,
Kang
,
X. L.
,
Liu
,
D.
,
Pien
,
L.-C.
,
Jen
,
H.-J.
,
Hsiao
,
S.-T. S.
, and
Chou
,
K.-R.
,
2022
, “
Prevalence of Dysphagia and Risk of Pneumonia and Mortality in Acute Stroke Patients: A Meta-Analysis
,”
BMC Geriatr.
,
22
(
1
), p.
420
.10.1186/s12877-022-02960-5
4.
Sahni
,
R.
, and
Weinberger
,
J.
,
2007
, “
Management of Intracerebral Hemorrhage
,”
Vasc. Health Risk Manage.
,
3
(
5
), pp.
701
709
.https://pmc.ncbi.nlm.nih.gov/articles/PMC2291314/
5.
Keep
,
R. F.
,
Hua
,
Y.
, and
Xi
,
G.
,
2012
, “
Intracerebral Haemorrhage: Mechanisms of Injury and Therapeutic Targets
,”
Lancet Neurol.
,
11
(
8
), pp.
720
731
.10.1016/S1474-4422(12)70104-7
6.
Butcher
,
K.
,
Jeerakathil
,
T.
,
Emery
,
D.
,
Dowlatshahi
,
D.
,
Hill
,
M. D.
,
Sharma
,
M.
,
Buck
,
B.
,
Findlay
,
M.
,
Lee
,
T. Y.
, and
Demchuk
,
A. M.
,
2010
, “
The Intracerebral Haemorrhage Acutely Decreasing Arterial Pressure Trial: ICH ADAPT
,”
Int. J. Stroke
,
5
(
3
), pp.
227
233
.10.1111/j.1747-4949.2010.00431.x
7.
Zhao
,
Y.-N.
, and
Chen
,
X.-L.
,
2016
, “
Endoscopic Treatment of Hypertensive Intracerebral Hemorrhage: A Technical Review
,”
Chronic Dis. Transl. Med.
,
2
(
3
), pp.
140
146
.10.1016/j.cdtm.2016.11.002
8.
Zhang
,
G.
,
Wang
,
J.
,
Wang
,
P.
, and
Wu
,
N.
,
2023
, “
Endoscopic Ipsilateral Interhemispheric Approach for Middle-Third Falcine Meningioma: A Case Report and Literature Review
,”
Brain Sci.
,
13
(
7
), p.
1085
.10.3390/brainsci13071085
9.
Qian
,
L.
,
Wu
,
J. Y.
,
DiMaio
,
S. P.
,
Navab
,
N.
, and
Kazanzides
,
P.
,
2020
, “
A Review of Augmented Reality in Robotic-Assisted Surgery
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
1
), pp.
1
16
.10.1109/TMRB.2019.2957061
10.
Madoglio
,
A.
,
Roca
,
E.
,
Tampalini
,
F.
,
Fontanella
,
M. M.
, and
Doglietto
,
F.
,
2022
, “
Robotics in Neuroendoscopy
,”
Introduction to Robotics in Minimally Invasive Neurosurgery
,
Springer
, Ferrara, Italy, pp.
39
55
.
11.
Ho
,
J. C.
,
Liang
,
L.
,
Grigsby
,
E. M.
,
Balaguer
,
J. M.
,
Karapetyan
,
V.
,
Schaeffer
,
D. J.
,
Silva
,
A. C.
,
Hitchens
,
T. K.
,
Capogrosso
,
M.
, and
Gerszten
,
P. C.
,
2022
, “
Robot Assisted Neurosurgery for High-Accuracy, Minimally-Invasive Deep Brain Electrophysiology in Monkeys
,”
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
, Glasgow, Scotland, UK, July 11–15, pp.
3115
3118
.10.1109/EMBC48229.2022.9871520
12.
Levy
,
J. M.
,
Mace
,
J. C.
,
DeConde
,
A. S.
,
Steele
,
T. O.
, and
Smith
,
T. L.
,
2016
, “
Improvements in Psychological Dysfunction After Endoscopic Sinus Surgery for Patients With Chronic Rhinosinusitis
,”
Int. Forum Allergy Rhinol.
,
6
(
9
), pp.
906
913
.10.1002/alr.21776
13.
Qi
,
B.
,
Chen
,
H.
,
Langley
,
J.
,
Badie
,
B.
,
Hu
,
X.
, and
Sheng
,
J.
,
2023
, “
Towards an MRI-Compatible Flexible Endoscopic Robot for Transsphenoidal Neurosurgery
,”
2023 International Symposium on Medical Robotics (ISMR)
, Atlanta, GA, Apr. 19–21, pp.
1
7
.10.1109/ISMR57123.2023.10130235
14.
Brumfiel
,
T. A.
,
Qi
,
R.
,
Chapman
,
C.
,
Rashid
,
A.
,
Melkote
,
S. N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2023
, “
Design and Modeling of a Sub-2 mm Steerable Neuroendoscopic Grasping Tool
,”
IEEE Trans. Med. Rob. Bionics
,
5
(
4
), pp.
1105
1109
.10.1109/TMRB.2023.3315476
15.
Pang
,
W.
,
Wang
,
Y.
,
Guo
,
L.
,
Wang
,
B.
,
Lai
,
P.
, and
Xiao
,
J.
,
2022
, “
Two-Dimensional Photoacoustic/Ultrasonic Endoscopic Imaging Based on a Line-Focused Transducer
,”
Front. Bioeng. Biotechnol.
,
9
, p.
807633
.10.3389/fbioe.2021.807633
16.
Zhou
,
Z.
,
Yang
,
Z.
,
Jiang
,
S.
,
Zhang
,
F.
, and
Yan
,
H.
,
2019
, “
Design and Validation of a Surgical Navigation System for Brachytherapy Based on Mixed Reality
,”
Med. Phys.
,
46
(
8
), pp.
3709
3718
.10.1002/mp.13645
17.
Mahvash
,
M.
, and
Besharati Tabrizi
,
L.
,
2013
, “
A Novel Augmented Reality System of Image Projection for Image-Guided Neurosurgery
,”
Acta Neurochir.
,
155
(
5
), pp.
943
947
.10.1007/s00701-013-1668-2
18.
Deng
,
W.
,
Li
,
F.
,
Wang
,
M.
, and
Song
,
Z.
,
2014
, “
Easy-to-Use Augmented Reality Neuronavigation Using a Wireless Tablet PC
,”
Stereotactic Funct. Neurosurg.
,
92
(
1
), pp.
17
24
.10.1159/000354816
19.
Collins
,
T.
,
Pizarro
,
D.
,
Gasparini
,
S.
,
Bourdel
,
N.
,
Chauvet
,
P.
,
Canis
,
M.
,
Calvet
,
L.
, and
Bartoli
,
A.
,
2021
, “
Augmented Reality Guided Laparoscopic Surgery of the Uterus
,”
IEEE Trans. Med. Imaging
,
40
(
1
), pp.
371
380
.10.1109/TMI.2020.3027442
20.
Vagdargi
,
P.
,
Uneri
,
A.
,
Zhang
,
X.
,
Jones
,
C. K.
,
Wu
,
P.
,
Han
,
R.
,
Sisniega
,
A.
,
Lee
,
J.
,
Helm
,
P.
, and
Luciano
,
M.
,
2023
, “
Real-Time 3D Video Reconstruction for Guidance of Transventricular Neurosurgery
,”
IEEE Trans. Med. Rob. Bionics
,
5
(
3
), pp.
669
682
.10.1109/TMRB.2023.3292450
21.
Vagdargi
,
P.
,
Uneri
,
A.
,
Jones
,
C. K.
,
Wu
,
P.
,
Han
,
R.
,
Luciano
,
M. G.
,
Anderson
,
W. S.
,
Helm
,
P. A.
,
Hager
,
G. D.
, and
Siewerdsen
,
J. H.
,
2022
, “
Pre-Clinical Development of Robot-Assisted Ventriculoscopy for 3-D Image Reconstruction and Guidance of Deep Brain Neurosurgery
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
1
), pp.
28
37
.10.1109/TMRB.2021.3125322
22.
Chu
,
Y.
,
Yang
,
J.
,
Ma
,
S.
,
Ai
,
D.
,
Li
,
W.
,
Song
,
H.
,
Li
,
L.
,
Chen
,
D.
,
Chen
,
L.
, and
Wang
,
Y.
,
2017
, “
Registration and Fusion Quantification of Augmented Reality Based Nasal Endoscopic Surgery
,”
Med. Image Anal.
,
42
, pp.
241
256
.10.1016/j.media.2017.08.003
23.
Zhou
,
Z.
,
Yang
,
Z.
,
Jiang
,
S.
,
Zhuo
,
J.
,
Zhu
,
T.
, and
Ma
,
S.
,
2022
, “
Surgical Navigation System for Hypertensive Intracerebral Hemorrhage Based on Mixed Reality
,”
J. Digital Imaging
,
35
(
6
), pp.
1530
1543
.10.1007/s10278-022-00676-x
24.
Zeng
,
G.
,
Chen
,
S.
,
Mu
,
B.
,
Shi
,
G.
, and
Wu
,
J.
,
2023
, “
CPnP: Consistent Pose Estimator for Perspective-n-Point Problem With Bias Elimination
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
, London, UK, May 29–June 2, pp.
1940
1946
.10.1109/ICRA48891.2023.10160942
25.
Zhang
,
Z.
,
2000
, “
A Flexible New Technique for Camera Calibration
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
11
), pp.
1330
1334
.10.1109/34.888718
26.
Gao
,
Y.
,
Liu
,
K.
,
Lin
,
L.
,
Wang
,
X.
, and
Xie
,
L.
,
2022
, “
Use of Augmented Reality Navigation to Optimise the Surgical Management of Craniofacial Fibrous Dysplasia
,”
Br. J. Oral Maxillofac. Surg.
,
60
(
2
), pp.
162
167
.10.1016/j.bjoms.2021.03.011
27.
Sun
,
X.
,
Murthi
,
S. B.
,
Schwartzbauer
,
G.
, and
Varshney
,
A.
,
2020
, “
High-Precision 5DoF Tracking and Visualization of Catheter Placement in EVD of the Brain Using AR
,”
ACM Trans. Comput. Healthcare
,
1
(
2
), pp.
1
18
.10.1145/3365678
28.
Zeng
,
B.
,
Meng
,
F.
,
Ding
,
H.
, and
Wang
,
G.
,
2017
, “
A Surgical Robot With Augmented Reality Visualization for Stereoelectroencephalography Electrode Implantation
,”
Int. J. Comput. Assisted Radiol. Surg.
,
12
(
8
), pp.
1355
1368
.10.1007/s11548-017-1634-1
29.
Scharll
,
Y.
,
Letrari
,
S.
,
Laimer
,
G.
,
Schullian
,
P.
, and
Bale
,
R.
,
2022
, “
Puncture Accuracy of an Optical Tracked Robotic Aiming Device—A Phantom Study
,”
Eur. Radiol.
,
32
(
10
), pp.
6769
6776
.10.1007/s00330-022-08915-z
30.
Mohareri
,
O.
,
Schneider
,
C.
,
Adebar
,
T. K.
,
Yip
,
M. C.
,
Black
,
P.
,
Nguan
,
C. Y.
,
Bergman
,
D.
,
Seroger
,
J.
,
DiMaio
,
S.
, and
Salcudean
,
S. E.
,
2013
, “
Ultrasound-Based Image Guidance for Robot-Assisted Laparoscopic Radical Prostatectomy: Initial In-Vivo Results
,”
Proceedings of the Fourth International Conference on Information Processing in Computer-Assisted Interventions (IPCAI 2013)
,
Heidelberg, Germany
, June 26,
Springer
, pp.
40
50
.https://link.springer.com/chapter/10.1007/978-3-642-38568-1_5
31.
Vakharia
,
V. N.
,
Sparks
,
R.
,
O'Keeffe
,
A. G.
,
Rodionov
,
R.
,
Miserocchi
,
A.
,
McEvoy
,
A.
,
Ourselin
,
S.
, and
Duncan
,
J.
,
2017
, “
Accuracy of Intracranial Electrode Placement for Stereoelectroencephalography: A Systematic Review and Meta‐Analysis
,”
Epilepsia
,
58
(
6
), pp.
921
932
.10.1111/epi.13713
You do not currently have access to this content.