Abstract

This systematic review was aimed at identifying cost-effective outcome assessment metrics to perform clinical trials for assessing the efficacy of novel, low-cost gait training devices. The search was conducted by the investigators through electronic databases, namely, SCOPUS (91), Web of Science (93), PubMed (141), and Cochrane Library (164), from origination to Mar. 31, 2024. The study design was a preferred reporting items for systematic reviews and meta-analyses (PRISMA) style systematic review of randomized controlled trials (RCTs) of robotic gait training devices (RGTDs) that treated stroke patients. Based on our inclusion and exclusion criteria, 17 randomized controlled trials were studied to identify suitable outcome assessment measures. This involved 705 patients at different stages of stroke, who were treated with different intervention durations, devices, randomization, and blinding methods. It was observed from the extensive clinical trials with the RGTDs that it was tested with a variety of assessment methods. Cost-effective outcome assessment measures that require commonly available materials are chosen and discussed in this review. It is identified that the most extensively used measures possess concurrent validity, sufficient inter-rater, intra-rater, and test-retest reliability. Clinical trials with a sophisticated setup cannot be afforded by clinics in low-income countries. It is vital to identify assessment methods that require commonly available materials that do not incur huge material costs. The methods discussed in this review can be administered without special training. This can facilitate quantifying and comparing the efficacy of these devices through clinical trials and multicentric investigations.

References

1.
Kesar
,
T.
,
2023
, “
The Effects of Stroke and Stroke Gait Rehabilitation on Behavioral and Neurophysiological Outcomes: Challenges and Opportunities for Future Research
,”
Del. J. Public Health
,
9
(
3
), pp.
76
81
.10.32481/djph.2023.08.013
2.
Azzollini
,
V.
,
Dalise
,
S.
, and
Chisari
,
C.
,
2021
, “
How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective
,”
Front. Neurol.
,
12
, p.
797559
.10.3389/fneur.2021.797559
3.
Feigin
,
V. L.
,
Brainin
,
M.
,
Norrving
,
B.
,
Martins
,
S.
,
Sacco
,
R. L.
,
Hacke
,
W.
,
Fisher
,
M.
,
Pandian
,
J.
, and
Lindsay
,
P.
,
2022
, “
World Stroke Organization (WSO): Global Stroke Fact Sheet 2022
,”
Int. J. Stroke: Off. J. Int. Stroke Soc.
,
17
(
1
), pp.
18
29
.10.1177/17474930211065917
4.
Wang
,
Y.
,
Mukaino
,
M.
,
Ohtsuka
,
K.
,
Otaka
,
Y.
,
Tanikawa
,
H.
,
Matsuda
,
F.
,
Tsuchiyama
,
K.
,
Yamada
,
J.
, and
Saitoh
,
E.
,
2020
, “
Gait Characteristics of Post-Stroke Hemiparetic Patients With Different Walking Speeds
,”
Int. J. Rehabil. Res.
,
43
(
1
), pp.
69
75
.10.1097/MRR.0000000000000391
5.
Cirstea
,
C. M.
,
2020
, “
Gait Rehabilitation After Stroke
,”
Stroke
,
51
(
10
), pp.
2892
2894
.10.1161/STROKEAHA.120.032041
6.
Teodoro
,
J.
,
Fernandes
,
S.
,
Castro
,
C.
, and
Fernandes
,
J. B.
,
2024
, “
Current Trends in Gait Rehabilitation for Stroke Survivors: A Scoping Review of Randomized Controlled Trials
,”
J. Clin. Med.
,
13
(
5
), p.
1358
.10.3390/jcm13051358
7.
Arazpour
,
M.
,
Sharifi
,
G.
,
Mousavi
,
M. E.
, and
Maleki
,
M.
,
2018
, “
Role of Gait Training in Recovery of Standing and Walking in Subjects With Spinal Cord Injury
,” Essentials of Spinal Cord Injury Medicine,
IntechOpen
, London, UK.10.5772/intechopen.71312
8.
Umberger
,
B. R.
, and
Martin
,
P. E.
,
2007
, “
Mechanical Power and Efficiency of Level Walking With Different Stride Rates
,”
J. Exp. Biol.
,
210
(
18
), pp.
3255
3265
.10.1242/jeb.000950
9.
Physiopedia
, 2022, “
Gait
,” Physiopedia, London, UK, accessed Apr. 17, 2024, https://www.physio-pedia.com/Gait
10.
Beyaert
,
C.
,
Vasa
,
R.
, and
Frykberg
,
G. E.
,
2015
, “
Gait Post-Stroke: Pathophysiology and Rehabilitation Strategies
,”
Neurophysiol. Clin. Neurophysiol.
,
45
(
4–5
), pp.
335
355
.10.1016/j.neucli.2015.09.005
11.
Bizovičar
,
N.
,
Matjačić
,
Z.
,
Stanonik
,
I.
, and
Goljar
,
N.
,
2017
, “
Overground Gait Training Using a Motorized Assistive Device in Patients With Severe Disabilities After Stroke
,”
Int. J. Rehabil. Res./Int. Z. Rehabil. Rev./Int. Rech. Readapt.
,
40
(
1
), pp.
46
52
.10.1097/MRR.0000000000000199
12.
Stein
,
J.
,
Katz
,
D. I.
,
Schaffer
,
R. M. B.
,
Cramer
,
S. C.
,
Deutsch
,
A. F.
,
Harvey
,
R. L.
,
Lang
,
C. E.
, et al.,
2021
, “
Clinical Performance Measures for Stroke Rehabilitation: Performance Measures From the American Heart Association/American Stroke Association
,”
Stroke
,
52
(
10
), pp.
e675
e700
.10.1161/STR.0000000000000388
13.
Taveggia
,
G.
,
Borboni
,
A.
,
Mulé
,
C.
,
Villafañe
,
J. H.
, and
Negrini
,
S.
,
2016
, “
Conflicting Results of Robot-Assisted Versus Usual Gait Training During Postacute Rehabilitation of Stroke Patients: A Randomized Clinical Trial
,”
Int. J. Rehabil. Res./Int. Z. Rehabil. Rev./Int. Rech. Readapt.
,
39
(
1
), pp.
29
35
.10.1097/MRR.0000000000000137
14.
Ochi
,
M.
,
Wada
,
F.
,
Saeki
,
S.
, and
Hachisuka
,
K.
,
2015
, “
Gait Training in Subacute Non-Ambulatory Stroke Patients Using a Full Weight-Bearing Gait-Assistance Robot: A Prospective, Randomized, Open, Blinded-Endpoint Trial
,”
J. Neurol. Sci.
,
353
(
1–2
), pp.
130
136
.10.1016/j.jns.2015.04.033
15.
Kim
,
J.
,
Kim
,
D. Y.
,
Chun
,
M. H.
,
Kim
,
S. W.
,
Jeon
,
H. R.
,
Hwang
,
C. H.
,
Choi
,
J. K.
, and
Bae
,
S.
,
2019
, “
Effects of Robot-(Morning Walk®) Assisted Gait Training for Patients After Stroke: A Randomized Controlled Trial
,”
Clin. Rehabil.
,
33
(
3
), pp.
516
523
.10.1177/0269215518806563
16.
Tomida
,
K.
,
Sonoda
,
S.
,
Hirano
,
S.
,
Suzuki
,
A.
,
Tanino
,
G.
,
Kawakami
,
K.
,
Saitoh
,
E.
, and
Kagaya
,
H.
,
2019
, “
Randomized Controlled Trial of Gait Training Using Gait Exercise Assist Robot (GEAR) in Stroke Patients With Hemiplegia
,”
J. Stroke Cerebrovasc. Dis.: Off. J. Natl. Stroke Assoc.
,
28
(
9
), pp.
2421
2428
.10.1016/j.jstrokecerebrovasdis.2019.06.030
17.
Ogino
,
T.
,
Kanata
,
Y.
,
Uegaki
,
R.
,
Yamaguchi
,
T.
,
Morisaki
,
K.
,
Nakano
,
S.
, and
Domen
,
K.
,
2020
, “
Effects of Gait Exercise Assist Robot (GEAR) on Subjects With Chronic Stroke: A Randomized Controlled Pilot Trial
,”
J. Stroke Cerebrovasc. Dis.: Off. J. Natl. Stroke Assoc.
,
29
(
8
), p.
104886
.10.1016/j.jstrokecerebrovasdis.2020.104886
18.
Kang
,
C. J.
,
Chun
,
M. H.
,
Lee
,
J.
, and
Lee
,
J. Y.
,
2021
, “
Effects of Robot (SUBAR)-Assisted Gait Training in Patients With Chronic Stroke: Randomized Controlled Trial
,”
Medicine (Baltimore)
,
100
(
48
), p.
e27974
.10.1097/MD.0000000000027974
19.
Yu
,
D.
,
Yang
,
Z.
,
Lei
,
L.
,
Chaoming
,
N.
, and
Ming
,
W.
,
2021
, “
Robot-Assisted Gait Training Plan for Patients in Poststroke Recovery Period: A Single Blind Randomized Controlled Trial
,”
BioMed Res. Int.
,
2021
(
1
), pp.
1
7
.10.1155/2021/5820304
20.
Thimabut
,
N.
,
Yotnuengnit
,
P.
,
Charoenlimprasert
,
J.
,
Sillapachai
,
T.
,
Hirano
,
S.
,
Saitoh
,
E.
, and
Piravej
,
K.
,
2022
, “
Effects of the Robot-Assisted Gait Training Device Plus Physiotherapy in Improving Ambulatory Functions in Patients With Subacute Stroke With Hemiplegia: An Assessor-Blinded, Randomized Controlled Trial
,”
Arch. Phys. Med. Rehabil.
,
103
(
5
), pp.
843
850
.10.1016/j.apmr.2022.01.146
21.
Lin
,
Y. N.
,
Huang
,
S. W.
,
Kuan
,
Y. C.
,
Chen
,
H. C.
,
Jian
,
W. S.
, and
Lin
,
L. F.
,
2022
, “
Hybrid Robot-Assisted Gait Training for Motor Function in Subacute Stroke: A Single-Blind Randomized Controlled Trial
,”
J. Neuroeng. Rehabil.
,
19
(
1
), p.
99
.10.1186/s12984-022-01076-6
22.
Talaty
,
M.
, and
Esquenazi
,
A.
,
2023
, “
Feasibility and Outcomes of Supplemental Gait Training by Robotic and Conventional Means in Acute Stroke Rehabilitation
,”
J. Neuroeng. Rehabil.
,
20
(
1
), p.
134
.10.1186/s12984-023-01243-3
23.
Hidler
,
J.
,
Nichols
,
D.
,
Pelliccio
,
M.
,
Brady
,
K.
,
Campbell
,
D. D.
,
Kahn
,
J. H.
, and
Hornby
,
T. G.
,
2009
, “
Multicenter Randomized Clinical Trial Evaluating the Effectiveness of the Lokomat in Subacute Stroke
,”
Neurorehabil. Neural Repair
,
23
(
1
), pp.
5
13
.10.1177/1545968308326632
24.
Fisher
,
S.
,
Lucas
,
L.
, and
Thrasher
,
T. A.
,
2011
, “
Robot-Assisted Gait Training for Patients With Hemiparesis Due to Stroke
,”
Top. Stroke Rehabil.
,
18
(
3
), pp.
269
276
.10.1310/tsr1803-269
25.
Uçar
,
D. E.
,
Paker
,
N.
, and
Buğdaycı
,
D.
,
2014
, “
Lokomat: A Therapeutic Chance for Patients With Chronic Hemiplegia
,”
NeuroRehabilitation
,
34
(
3
), pp.
447
453
.10.3233/NRE-141054
26.
Kim
,
S.-Y.
,
Yang
,
L.
,
Park
,
I. J.
,
Kim
,
E. J.
,
Park
,
M. S.
,
You
,
S. H.
,
Kim
,
Y.-H.
,
Ko
,
H.-Y.
, and
Shin
,
Y.-I.
,
2015
, “
Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up
,”
IEEE Trans. Neural Syst. Rehabil. Eng. Publ.: IEEE Eng. Med. Biol. Soc.
,
23
(
4
), pp.
636
642
.10.1109/TNSRE.2015.2404936
27.
Mayr
,
A.
,
Quirbach
,
E.
,
Picelli
,
A.
,
Kofler
,
M.
,
Smania
,
N.
, and
Saltuari
,
L.
,
2019
, “
Early Robot-Assisted Gait Retraining in Non-Ambulatory Patients With Stroke: A Single Blind Randomized Controlled Trial
,”
Eur. J. Phys. Rehabil. Med.
,
54
(
6
), pp.
819
826
.10.23736/S1973-9087.18.04832-3
28.
Schwartz
,
I.
,
Sajin
,
A.
,
Fisher
,
I.
,
Neeb
,
M.
,
Shochina
,
M.
,
Katz‐Leurer
,
M.
, and
Meiner
,
Z.
,
2009
, “
The Effectiveness of Locomotor Therapy Using Robotic-Assisted Gait Training in Subacute Stroke Patients: A Randomized Controlled Trial
,”
PM&R
,
1
(
6
), pp.
516
523
.10.1016/j.pmrj.2009.03.009
29.
Nam
,
Y. G.
,
Ko
,
M. J.
,
Bok
,
S. K.
,
Paik
,
N.-J.
,
Lim
,
C.-Y.
,
Lee
,
J. W.
, and
Kwon
,
B. S.
,
2022
, “
Efficacy of Electromechanical-Assisted Gait Training on Clinical Walking Function and Gait Symmetry After Brain Injury of Stroke: A Randomized Controlled Trial
,”
Sci. Rep.
,
12
(
1
), p.
6880
.10.1038/s41598-022-10889-3
30.
Schwartz
,
I.
,
Sajin
,
A.
,
Moreh
,
E.
,
Fisher
,
I.
,
Neeb
,
M.
,
Forest
,
A.
,
Vaknin-Dembinsky
,
A.
,
Karusis
,
D.
, and
Meiner
,
Z.
,
2012
, “
Robot-Assisted Gait Training in Multiple Sclerosis Patients: A Randomized Trial
,”
Mult. Scler. (Houndmills, Basingstoke, Engl.)
,
18
(
6
), pp.
881
890
.10.1177/1352458511431075
31.
Beer
,
S.
,
Aschbacher
,
B.
,
Manoglou
,
D.
,
Gamper
,
E.
,
Kool
,
J.
, and
Kesselring
,
J.
,
2008
, “
Robot-Assisted Gait Training in Multiple Sclerosis: A Pilot Randomized Trial
,”
Mult. Scler. (Houndmills, Basingstoke, Engl.)
,
14
(
2
), pp.
231
236
.10.1177/1352458507082358
32.
Picelli
,
A.
,
Melotti
,
C.
,
Origano
,
F.
,
Waldner
,
A.
,
Gimigliano
,
R.
, and
Smania
,
N.
,
2012
, “
Does Robotic Gait Training Improve Balance in Parkinson's Disease? A Randomized Controlled Trial
,”
Parkinsonism Relat. Disord.
,
18
(
8
), pp.
990
993
.10.1016/j.parkreldis.2012.05.010
33.
Straudi
,
S.
,
Fanciullacci
,
C.
,
Martinuzzi
,
C.
,
Pavarelli
,
C.
,
Rossi
,
B.
,
Chisari
,
C.
, and
Basaglia
,
N.
,
2016
, “
The Effects of Robot-Assisted Gait Training in Progressive Multiple Sclerosis: A Randomized Controlled Trial
,”
Mult. Scler. (Houndmills, Basingstoke, Engl.)
,
22
(
3
), pp.
373
384
.10.1177/1352458515620933
34.
Galli
,
M.
,
Cimolin
,
V.
,
De Pandis
,
M. F.
,
Le Pera
,
D.
,
Sova
,
I.
,
Albertini
,
G.
,
Stocchi
,
F.
, and
Franceschini
,
M.
,
2016
, “
Robot-Assisted Gait Training Versus Treadmill Training in Patients With Parkinson's Disease: A Kinematic Evaluation With Gait Profile Score
,”
Funct. Neurol.
,
31
(
3
), pp.
163
170
.10.11138/fneur/2016.31.3.163
35.
Ammann-Reiffer
,
C.
,
Bastiaenen
,
C. H. G.
,
Meyer-Heim
,
A. D.
, and
van Hedel
,
H. J. A.
,
2017
, “
Effectiveness of Robot-Assisted Gait Training in Children With Cerebral Palsy: A Bicenter, Pragmatic, Randomized, Cross-Over Trial (PeLoGAIT)
,”
BMC Pediatr.
,
17
(
1
), p.
64
.10.1186/s12887-017-0815-y
36.
Capecci
,
M.
,
Pournajaf
,
S.
,
Galafate
,
D.
,
Sale
,
P.
,
Le Pera
,
D.
,
Goffredo
,
M.
,
De Pandis
,
M. F.
,
Andrenelli
,
E.
,
Pennacchioni
,
M.
,
Ceravolo
,
M. G.
, and
Franceschini
,
M.
,
2019
, “
Clinical Effects of Robot-Assisted Gait Training and Treadmill Training for Parkinson's Disease. A Randomized Controlled Trial
,”
Ann. Phys. Rehabil. Med.
,
62
(
5
), pp.
303
312
.10.1016/j.rehab.2019.06.016
37.
Kang
,
M.-G.
,
Yun
,
S. J.
,
Shin
,
H. I.
,
Kim
,
E.
,
Lee
,
H. H.
,
Oh
,
B.-M.
, and
Seo
,
H. G.
,
2019
, “
Effects of Robot-Assisted Gait Training in Patients With Parkinson's Disease: Study Protocol for a Randomized Controlled Trial
,”
Trials
,
20
(
1
), p.
15
.10.1186/s13063-018-3123-4
38.
Piira
,
A.
,
Lannem
,
A.
,
Sørensen
,
M.
,
Glott
,
T.
,
Knutsen
,
R.
,
Jørgensen
,
L.
,
Gjesdal
,
K.
,
Hjeltnes
,
N.
, and
Knutsen
,
S.
,
2019
, “
Robot-Assisted Locomotor Training Did Not Improve Walking Function in Patients With Chronic Incomplete Spinal Cord Injury: A Randomized Clinical Trial
,”
J. Rehabil. Med.
,
51
(
5
), pp.
385
389
.10.2340/16501977-2547
39.
Kawasaki
,
S.
,
Ohata
,
K.
,
Yoshida
,
T.
,
Yokoyama
,
A.
, and
Yamada
,
S.
,
2020
, “
Gait Improvements by Assisting Hip Movements With the Robot in Children With Cerebral Palsy: A Pilot Randomized Controlled Trial
,”
J. NeuroEng. Rehabil.
,
17
(
1
), p.
87
.10.1186/s12984-020-00712-3
40.
Mıdık
,
M.
,
Paker
,
N.
,
Buğdaycı
,
D.
, and
Mıdık
,
A. C.
,
2020
, “
Effects of Robot-Assisted Gait Training on Lower Extremity Strength, Functional Independence, and Walking Function in Men With Incomplete Traumatic Spinal Cord Injury
,”
Turk. J. Phys. Med. Rehabil.
,
66
(
1
), pp.
54
59
.10.5606/tftrd.2020.3316
41.
Sconza
,
C.
,
Negrini
,
F.
,
Di Matteo
,
B.
,
Borboni
,
A.
,
Boccia
,
G.
,
Petrikonis
,
I.
,
Stankevičius
,
E.
, and
Casale
,
R.
,
2021
, “
Robot-Assisted Gait Training in Patients With Multiple Sclerosis: A Randomized Controlled Crossover Trial
,”
Medicina (Kaunas, Lith.)
,
57
(
7
), p.
713
.10.3390/medicina57070713
42.
Grecco
,
L.
,
Tomita
,
S.
,
Christovão
,
T.
,
Pasini
,
H.
,
Sampaio
,
L.
, and
Oliveira
,
C.
,
2013
, “
Effect of Treadmill Gait Training on Static and Functional Balance in Children With Cerebral Palsy: Randomized Controlled Clinical Trial
,”
Rev. Bras. Fisioter. São Carlos São Paulo Braz.
,
17
(
1
), pp.
17
23
.10.1590/S1413-35552012005000066
43.
Hilderley
,
A. J.
,
Fehlings
,
D.
,
Lee
,
G. W.
, and
Wright
,
F. V.
,
2016
, “
Comparison of a Robotic-Assisted Gait Training Program With a Program of Functional Gait Training for Children With Cerebral Palsy: Design and Methods of a Two Group Randomized Controlled Cross-Over Trial
,”
SpringerPlus
,
5
(
1
), p.
1886
.10.1186/s40064-016-3535-0
44.
Wiart
,
L.
,
Rosychuk
,
R. J.
, and
Wright
,
F. V.
,
2016
, “
Evaluation of the Effectiveness of Robotic Gait Training and Gait-Focused Physical Therapy Programs for Children and Youth With Cerebral Palsy: A Mixed Methods RCT
,”
BMC Neurol.
,
16
(
1
), p.
86
.10.1186/s12883-016-0582-7
45.
Klobucká
,
S.
,
Klobucký
,
R.
, and
Kollár
,
B.
,
2020
, “
Effect of Robot-Assisted Gait Training on Motor Functions in Adolescent and Young Adult Patients With Bilateral Spastic Cerebral Palsy: A Randomized Controlled Trial
,”
NeuroRehabilitation
,
47
(
4
), pp.
495
508
.10.3233/NRE-203102
46.
Moll
,
F.
,
Kessel
,
A.
,
Bonetto
,
A.
,
Stresow
,
J.
,
Herten
,
M.
,
Dudda
,
M.
, and
Adermann
,
J.
,
2022
, “
Use of Robot-Assisted Gait Training in Pediatric Patients With Cerebral Palsy in an Inpatient Setting-A Randomized Controlled Trial
,”
Sensors
,
22
(
24
), p.
9946
.10.3390/s22249946
47.
Pournajaf
,
S.
,
Calabrò
,
R. S.
,
Naro
,
A.
,
Goffredo
,
M.
,
Aprile
,
I.
,
Tamburella
,
F.
, and
Filoni
,
S.
, et al.,
2023
, “
Robotic Versus Conventional Overground Gait Training in Subacute Stroke Survivors: A Multicenter Controlled Clinical Trial
,”
J. Clin. Med.
,
12
(
2
), p.
439
.10.3390/jcm12020439
48.
Knight
,
R. B.
,
He
,
J.
,
Carhart
,
M. R.
, and
Koeneman
,
J.
,
2003
, “
Design and Development of a Simple, Low Cost Gait Training Assistive Device
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439)
, Cancun, Mexico, Sept. 17–21, Vol.
2
, pp.
1724
1727
.10.1109/IEMBS.2003.1279731
49.
Bin
,
L.
,
Wang
,
X.
,
Jiatong
,
H.
,
Donghua
,
F.
,
Qiang
,
W.
,
Yingchao
,
S.
,
Yiming
,
M.
, and
Yong
,
M.
,
2023
, “
The Effect of Robot-Assisted Gait Training for Patients With Spinal Cord Injury: A Systematic Review and Meta-Analysis
,”
Front. Neurosci.
,
17
, p.
1252651
.10.3389/fnins.2023.1252651
50.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.10.1053/apmr.2000.6280
51.
Ji
,
Z.
, and
Manna
,
Y.
,
2008
, “
Synthesis of a Pattern Generation Mechanism for Gait Rehabilitation
,”
ASME J. Med. Devices
,
2
(
3
), p.
031004
.10.1115/1.2975964
52.
Kong
,
K.
, and
Tomizuka
,
M.
,
2012
, “
Design of a Rehabilitation Device Based on a Mechanical Link System
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
035001
.10.1115/1.4006875
53.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.10.1115/1.4032274
54.
Shao
,
Y.
,
Xiang
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
, pp.
31
42
.10.1016/j.mechmachtheory.2016.05.018
55.
Kora
,
K.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2017
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), p.
014503
.10.1115/1.4035127
56.
Tsuge
,
B. Y.
, and
Michael McCarthy
,
J.
,
2016
, “
An Adjustable Single Degree-of-Freedom System to Guide Natural Walking Movement for Rehabilitation
,”
ASME J. Med. Devices
,
10
(
4
), p.
044501
.10.1115/1.4033329
57.
Lamine
,
H.
,
Amine Laribi
,
M.
,
Bennour
,
S.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2017
, “
Design Study of a Cable-Based Gait Training Machine
,”
J. Bionic Eng.
,
14
(
2
), pp.
232
244
.10.1016/S1672-6529(16)60394-3
58.
Gonçalves
,
R. S.
,
Soares
,
G.
, and
Carvalho
,
J. C.
,
2019
, “
Conceptual Design of a Rehabilitation Device Based on Cam-Follower and Crank-Rocker Mechanisms Hand Actioned
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
7
), p.
277
.10.1007/s40430-019-1772-1
59.
Yul Shin
,
S.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044503
.10.1115/1.4039973
60.
Haghjoo
,
M. R.
,
Lee
,
H.
,
Afzal
,
M. R.
,
Eizad
,
A.
, and
Yoon
,
J.
,
2021
, “
Mech-Walker: A Novel Single-DOF Linkage Device With Movable Frame for Gait Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
13
23
.10.1109/TMECH.2020.2993799
61.
Jiang
,
C.
, and
Xiang
,
Z.
,
2020
, “
A Novel Gait Training Device for Bedridden Patients' Rehabilitation
,”
J. Mech. Med. Biol.
,
20
(
5
), p.
2050024
.10.1142/S0219519420500244
62.
Li
,
M.
,
Yan
,
J.
,
Zhao
,
H.
,
Ma
,
G.
, and
Li
,
Y.
,
2021
, “
Mechanically Assisted Neurorehabilitation: A Novel Six-Bar Linkage Mechanism for Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng. Publ.: IEEE Eng. Med. Biol. Soc.
,
29
, pp.
985
992
.10.1109/TNSRE.2021.3081706
63.
Song
,
W.
,
Zhao
,
P.
,
Li
,
X.
,
Deng
,
X.
, and
Zi
,
B.
,
2023
, “
Data-Driven Design of a Six-Bar Lower-Limb Rehabilitation Mechanism Based on Gait Trajectory Prediction
,”
IEEE Trans. Neural Syst. Rehabil. Eng. Publ.: IEEE Eng. Med. Biol. Soc.
,
31
, pp.
109
118
.10.1109/TNSRE.2022.3217448
64.
Sá de Paiva
,
T.
,
Gonçalves
,
R.
, and
Carbone
,
G.
,
2024
, “
A Critical Review and Systematic Design Approach for Linkage-Based Gait Rehabilitation Devices
,”
Robotics
,
13
(
1
), p.
11
.10.3390/robotics13010011
65.
Santisteban
,
L.
,
Teremetz
,
M.
,
Irazusta
,
J.
,
Lindberg
,
P. G.
, and
Rodriguez-Larrad
,
A.
,
2021
, “
Outcome Measures Used in Trials on Gait Rehabilitation in Multiple Sclerosis: A Systematic Literature Review
,”
PLoS One
,
16
(
9
), p.
e0257809
.10.1371/journal.pone.0257809
66.
Cho
,
J.-E.
,
Yoo
,
J. S.
,
Kim
,
K. E.
,
Cho
,
S. T.
,
Jang
,
W. S.
,
Cho
,
K. H.
, and
Lee
,
W.-H.
,
2018
, “
Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients
,”
BioMed Res. Int.
,
2018
, pp.
1
11
.10.1155/2018/4085298
67.
Geroin
,
C.
,
Mazzoleni
,
S.
,
Smania
,
N.
,
Gandolfi
,
M.
,
Bonaiuti
,
D.
,
Gasperini
,
G.
, and
Sale
,
P.
, et al.,
2013
, “
Systematic Review of Outcome Measures of Walking Training Using Electromechanical and Robotic Devices in Patients With Stroke
,”
J. Rehabil. Med.
,
45
(
10
), pp.
987
996
.10.2340/16501977-1234
68.
Klöpfer-Krämer
,
I.
,
Brand
,
A.
,
Wackerle
,
H.
,
Müßig
,
J.
,
Kröger
,
I.
, and
Augat
,
P.
,
2020
, “
Gait Analysis—Available Platforms for Outcome Assessment
,”
Injury
,
51
, pp.
S90
S96
.10.1016/j.injury.2019.11.011
69.
Hulleck
,
A. A.
,
Menoth Mohan
,
D.
,
Abdallah
,
N.
,
El Rich
,
M.
, and
Khalaf
,
K.
,
2022
, “
Present and Future of Gait Assessment in Clinical Practice: Towards the Application of Novel Trends and Technologies
,”
Front. Med. Technol.
,
4
, p.
901331
.10.3389/fmedt.2022.901331
70.
Mohan
,
D. M.
,
Khandoker
,
A. H.
,
Wasti
,
S. A.
,
Ismail Ibrahim Ismail Alali
,
S.
,
Jelinek
,
H. F.
, and
Khalaf
,
K.
,
2021
, “
Assessment Methods of Post-Stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis
,”
Front. Neurol.
,
12
, p.
12
.10.3389/fneur.2021.650024
71.
Ridao-Fernández
,
C.
,
Pinero-Pinto
,
E.
, and
Chamorro-Moriana
,
G.
,
2019
, “
Observational Gait Assessment Scales in Patients With Walking Disorders: Systematic Review
,”
BioMed Res. Int.
,
2019
, p.
e2085039
.10.1155/2019/2085039
72.
Hadouiri
,
N.
,
Fournel
,
I.
,
Thauvin-Robinet
,
C.
,
Jacquin-Piques
,
A.
,
Ornetti
,
P.
, and
Gueugnon
,
M.
,
2024
, “
Walking Test Outcomes in Adults With Genetic Neuromuscular Diseases: A Systematic Literature Review of Their Measurement Properties
,”
Eur. J. Phys. Rehabil. Med.
,
60
(
2
), pp.
257
–2
69
.10.23736/S1973-9087.24.08095-X
73.
Liberati
,
A.
,
Altman
,
D. G.
,
Tetzlaff
,
J.
,
Mulrow
,
C.
,
Gøtzsche
,
P. C.
,
Ioannidis
,
J. P. A.
,
Clarke
,
M.
,
Devereaux
,
P. J.
,
Kleijnen
,
J.
, and
Moher
,
D.
,
2009
, “
The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration
,”
PLoS Med.
,
6
(
7
), p.
e1000100
.10.1371/journal.pmed.1000100
74.
Whittle
,
M. W.
, and
Levine
,
D.
,
1999
, “
Three-Dimensional Relationships Between the Movements of the Pelvis and Lumbar Spine During Normal Gait
,”
Hum. Mov. Sci.
,
18
(
5
), pp.
681
692
.10.1016/S0167-9457(99)00032-9
75.
Hariton
,
E.
, and
Locascio
,
J. J.
,
2018
, “
Randomised Controlled Trials—The Gold Standard for Effectiveness Research
,”
BJOG Int. J. Obstet. Gynaecol.
,
125
(
13
), p.
1716
.10.1111/1471-0528.15199
76.
Sil
,
A.
,
Kumar
,
P.
,
Kumar
,
R.
, and
Das
,
N. K.
,
2019
, “
Selection of Control, Randomization, Blinding, and Allocation Concealment
,”
Indian Dermatol. Online J.
,
10
(
5
), pp.
601
605
.10.4103/idoj.IDOJ_149_19
77.
Berger
,
V. W.
, and
Alperson
,
S. Y.
,
2009
, “
A General Framework for the Evaluation of Clinical Trial Quality
,”
Rev. Recent Clin. Trials
,
4
(
2
), pp.
79
88
.10.2174/157488709788186021
78.
Thurston
,
M.
,
Piitulainen
,
H.
,
Vujaklija
,
I.
,
Avela
,
J.
, and
Kulmala
,
J. P.
,
2023
, “
Metabolic Cost Reductions Are Associated With Reduced Muscle Activity When Walking With a Robotic Exosuit in Patients With Cerebral Palsy
,”
Gait Posture
,
106
, pp.
S206
S207
.10.1016/j.gaitpost.2023.07.248
79.
Warutkar
,
V.
,
Dadgal
,
R.
, and
Mangulkar
,
U. R.
,
2022
, “
Use of Robotics in Gait Rehabilitation Following Stroke: A Review
,”
Cureus
,
14
(
11
), p.
e31075
.10.7759/cureus.31075
80.
Berkelman
,
P.
,
Rossi
,
P.
,
Lu
,
T.
, and
Ma
,
J.
,
2007
, “
Passive Orthosis Linkage for Locomotor Rehabilitation
,”
2007 IEEE Tenth International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13–15, pp.
425
431
.10.1109/ICORR.2007.4428460
81.
Mehrholz
,
J.
,
Wagner
,
K.
,
Rutte
,
K.
,
Meiβner
,
D.
, and
Pohl
,
M.
,
2007
, “
Predictive Validity and Responsiveness of the Functional Ambulation Category in Hemiparetic Patients After Stroke
,”
Arch. Phys. Med. Rehabil.
,
88
(
10
), pp.
1314
1319
.10.1016/j.apmr.2007.06.764
82.
Wade
,
D. T.
,
1993
, “
Measurement in Neurologic Rehabilitation
,”
Curr. Opin. Neurol.
,
6
(
5
), pp.
778
784
.10.1097/00019052-199310000-00017
83.
Steffen
,
T.
, and
Seney
,
M.
,
2008
, “
Test-Retest Reliability and Minimal Detectable Change on Balance and Ambulation Tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in People With Parkinsonism
,”
Phys. Ther.
,
88
(
6
), pp.
733
746
.10.2522/ptj.20070214
84.
Watson
,
M. J.
,
2002
, “
Refining the Ten-Metre Walking Test for Use With Neurologically Impaired People
,”
Physiotherapy
,
88
(
7
), pp.
386
397
.10.1016/S0031-9406(05)61264-3
85.
Stephens
,
J. M.
, and
Goldie
,
P. A.
,
1999
, “
Walking Speed on Parquetry and Carpet After Stroke: Effect of Surface and Retest Reliability
,”
Clin. Rehabil.
,
13
(
2
), pp.
171
181
.10.1191/026921599668553798
86.
Downs
,
S.
,
2015
, “
The Berg Balance Scale
,”
J. Physiother.
,
61
(
1
), p.
46
.10.1016/j.jphys.2014.10.002
87.
Berg
,
K. O.
,
Maki
,
B. E.
,
Williams
,
J. I.
,
Holliday
,
P. J.
, and
Wood-Dauphinee
,
S. L.
,
1992
, “
Clinical and Laboratory Measures of Postural Balance in an Elderly Population
,”
Arch. Phys. Med. Rehabil.
,
73
(
11
), pp.
1073
1080
.https://pubmed.ncbi.nlm.nih.gov/1444775/
88.
Scivoletto
,
G.
,
Tamburella
,
F.
,
Laurenza
,
L.
,
Foti
,
C.
,
Ditunno
,
J. F.
, and
Molinari
,
M.
,
2011
, “
Validity and Reliability of the 10-m Walk Test and the 6-min Walk Test in Spinal Cord Injury Patients
,”
Spinal Cord
,
49
(
6
), pp.
736
740
.10.1038/sc.2010.180
89.
Matos Casano
,
H. A.
, and
Anjum
,
F.
,
2024
, “
Six-Minute Walk Test
,”
StatPearls
,
StatPearls Publishing
,
Treasure Island, FL
.
90.
Shumway-Cook
,
A.
,
Brauer
,
S.
, and
Woollacott
,
M.
,
2000
, “
Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test
,”
Phys. Ther.
,
80
(
9
), pp.
896
903
.10.1093/ptj/80.9.896
91.
Steffen
,
T. M.
,
Hacker
,
T. A.
, and
Mollinger
,
L.
,
2002
, “
Age- and Gender-Related Test Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds
,”
Phys. Ther.
,
82
(
2
), pp.
128
137
.10.1093/ptj/82.2.128
92.
Heinemann
,
A. W.
,
Linacre
,
J. M.
,
Wright
,
B. D.
,
Hamilton
,
B. B.
, and
Granger
,
C.
,
1993
, “
Relationships Between Impairment and Physical Disability as Measured by the Functional Independence Measure
,”
Arch. Phys. Med. Rehabil.
,
74
(
6
), pp.
566
573
.10.1016/0003-9993(93)90153-2
93.
Linacre
,
J. M.
,
Heinemann
,
A. W.
,
Wright
,
B. D.
,
Granger
,
C. V.
, and
Hamilton
,
B. B.
,
1994
, “
The Structure and Stability of the Functional Independence Measure
,”
Arch. Phys. Med. Rehabil.
,
75
(
2
), pp.
127
132
.10.1016/0003-9993(94)90384-0
94.
Collen
,
F. M.
,
Wade
,
D. T.
,
Robb
,
G. F.
, and
Bradshaw
,
C. M.
,
1991
, “
The Rivermead Mobility Index: A Further Development of the Rivermead Motor Assessment
,”
Int. Disabil. Stud.
,
13
(
2
), pp.
50
54
.10.3109/03790799109166684
95.
Forlander
,
D. A.
, and
Bohannon
,
R. W.
,
1999
, “
Rivermead Mobility Index: A Brief Review of Research to Date
,”
Clin. Rehabil.
,
13
(
2
), pp.
97
100
.10.1191/026921599675502264
96.
Hsieh
,
C. L.
,
Hsueh
,
I. P.
, and
Mao
,
H. F.
,
2000
, “
Validity and Responsiveness of the Rivermead Mobility Index in Stroke Patients
,”
Scand. J. Rehabil. Med.
,
32
(
3
), pp.
140
–14
2
.10.1080/003655000750045497
97.
Fugl-Meyer
,
A. R.
,
Jääskö
,
L.
,
Leyman
,
I.
,
Olsson
,
S.
, and
Steglind
,
S.
,
1975
, “
The Post-Stroke Hemiplegic Patient. 1. A Method for Evaluation of Physical Performance
,”
Scand. J. Rehabil. Med.
,
7
(
1
), pp.
13
31
.10.2340/1650197771331
98.
Gladstone
,
D. J.
,
Danells
,
C. J.
, and
Black
,
S. E.
,
2002
, “
The Fugl-Meyer Assessment of Motor Recovery After Stroke: A Critical Review of Its Measurement Properties
,”
Neurorehabil. Neural Repair
,
16
(
3
), pp.
232
240
.10.1177/154596802401105171
99.
Gor-García-Fogeda
,
M. D.
,
Molina-Rueda
,
F.
,
Cuesta-Gómez
,
A.
,
Carratalá-Tejada
,
M.
,
Alguacil-Diego
,
I. M.
, and
Miangolarra-Page
,
J. C.
,
2014
, “
Scales to Assess Gross Motor Function in Stroke Patients: A Systematic Review
,”
Arch. Phys. Med. Rehabil.
,
95
(
6
), pp.
1174
1183
.10.1016/j.apmr.2014.02.013
100.
Green
,
J.
,
Forster
,
A.
, and
Young
,
J.
,
2001
, “
A Test-Retest Reliability Study of the Barthel Index, the Rivermead Mobility Index, the Nottingham Extended Activities of Daily Living Scale and the Frenchay Activities Index in Stroke Patients
,”
Disabil. Rehabil.
,
23
(
15
), pp.
670
676
.10.1080/09638280110045382
101.
Fayazi
,
M.
,
Dehkordi
,
S. N.
,
Dadgoo
,
M.
, and
Salehi
,
M.
,
2012
, “
Test-Retest Reliability of Motricity Index Strength Assessments for Lower Extremity in Post Stroke Hemiparesis
,”
Med. J. Islam. Repub. Iran
,
26
(
1
), pp.
27
30
.https://pubmed.ncbi.nlm.nih.gov/23483112/
102.
Mahoney
,
F. I.
, and
Barthel
,
D. W.
,
1965
, “
Functional Evaluation: The Barthel Index
,”
Md. State Med. J.
,
14
, pp.
61
65
.https://pubmed.ncbi.nlm.nih.gov/14258950/
103.
Wang
,
Y.-C.
,
Chang
,
P.-F.
,
Chen
,
Y.-M.
,
Lee
,
Y.-C.
,
Huang
,
S.-L.
,
Chen
,
M.-H.
, and
Hsieh
,
C.-L.
,
2023
, “
Comparison of Responsiveness of the Barthel Index and Modified Barthel Index in Patients With Stroke
,”
Disabil. Rehabil.
,
45
(
6
), pp.
1097
1102
.10.1080/09638288.2022.2055166
104.
Morris
,
S.
,
2002
, “
Ashworth and Tardieu Scales: Their Clinical Relevance for Measuring Spasticity in Adult and Paediatric Neurological Populations
,”
Phys. Ther. Rev.
,
7
(
1
), pp.
53
62
.10.1179/108331902125001770
105.
Charalambous
,
C. P.
,
2014
, “
Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity
,”
Classic Papers in Orthopaedics
,
P. A.
Banaszkiewicz
and
D. F.
Kader
, eds.,
Springer
,
London
, UK, pp.
415
417
.
106.
Tinetti
,
M. E.
,
Williams
,
T. F.
, and
Mayewski
,
R.
,
1986
, “
Fall Risk Index for Elderly Patients Based on Number of Chronic Disabilities
,”
Am. J. Med.
,
80
(
3
), pp.
429
434
.10.1016/0002-9343(86)90717-5
107.
Raîche
,
M.
,
Hébert
,
R.
,
Prince
,
F.
, and
Corriveau
,
H.
,
2000
, “
Screening Older Adults at Risk of Falling With the Tinetti Balance Scale
,”
Lancet Lond. Engl.
,
356
(
9234
), pp.
1001
1002
.10.1016/S0140-6736(00)02695-7
108.
Salbach
,
N. M.
,
Mayo
,
N. E.
,
Higgins
,
J.
,
Ahmed
,
S.
,
Finch
,
L. E.
, and
Richards
,
C. L.
,
2001
, “
Responsiveness and Predictability of Gait Speed and Other Disability Measures in Acute Stroke
,”
Arch. Phys. Med. Rehabil.
,
82
(
9
), pp.
1204
1212
.10.1053/apmr.2001.24907
109.
Wade
,
D. T.
,
1992
, “
Measurement in Neurological Rehabilitation
,”
Curr. Opin. Neurol. Neurosurg.
,
5
(
5
), pp.
682
686
.https://pubmed.ncbi.nlm.nih.gov/1392142/
110.
Bowden
,
M. G.
,
Balasubramanian
,
C. K.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2006
, “
Anterior-Posterior Ground Reaction Forces as a Measure of Paretic Leg Contribution in Hemiparetic Walking
,”
Stroke
,
37
(
3
), pp.
872
876
.10.1161/01.STR.0000204063.75779.8d
111.
Holden
,
M. K.
,
Gill
,
K. M.
,
Magliozzi
,
M. R.
,
Nathan
,
J.
, and
Piehl-Baker
,
L.
,
1984
, “
Clinical Gait Assessment in the Neurologically Impaired
,”
Reliab. Meaningfulness Phys. Ther.
,
64
(
1
), pp.
35
40
.10.1093/ptj/64.1.35
112.
Holden
,
M. K.
,
Gill
,
K. M.
, and
Magliozzi
,
M. R.
,
1986
, “
Gait Assessment for Neurologically Impaired Patients. Standards for Outcome Assessment
,”
Phys. Ther.
,
66
(
10
), pp.
1530
1539
.10.1093/ptj/66.10.1530
113.
Kollen
,
B.
,
Kwakkel
,
G.
, and
Lindeman
,
E.
,
2006
, “
Time Dependency of Walking Classification in Stroke
,”
Phys. Ther.
,
86
(
5
), pp.
618
625
.10.1093/ptj/86.5.618
114.
Lam
,
T.
,
Noonan
,
V. K.
,
Eng
,
J. J.
, and
SCIRE Research Team
,
2008
, “
A Systematic Review of Functional Ambulation Outcome Measures in Spinal Cord Injury
,”
Spinal Cord
,
46
(
4
), pp.
246
254
.10.1038/sj.sc.3102134
115.
Bahrami
,
F.
,
Noorizadeh Dehkordi
,
S.
, and
Dadgoo
,
M.
,
2017
, “
Inter and Intra Rater Reliability of the 10 Meter Walk Test in the Community Dweller Adults With Spastic Cerebral Palsy
,”
Iran. J. Child Neurol.
,
11
(
1
), pp.
57
64
.https://pubmed.ncbi.nlm.nih.gov/28277557/
116.
Moore
,
J. L.
,
Potter
,
K.
,
Blankshain
,
K.
,
Kaplan
,
S. L.
,
O'Dwyer
,
L. C.
, and
Sullivan
,
J. E.
,
2018
, “
A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation: A Clinical Practice Guideline
,”
J. Neurol. Phys. Ther. JNPT
,
42
(
3
), pp.
174
220
.10.1097/NPT.0000000000000229
117.
Cech
,
D. J.
, and “Tink”
Martin
,
S.
,
2012
, “
Chapter 5—Evaluation of Function, Activity, and Participation
,”
Functional Movement Development Across the Life Span
, 3rd ed., D. J. Cech and S. “Tink” Martin, eds.,
W.B. Saunders
,
Saint Louis, MO
, pp.
88
104
.10.1016/B978-1-4160-4978-4.00005-3
You do not currently have access to this content.