Abstract

Individuals with a drop-foot generally have issues of foot-slap and toe-drag, and ankle-foot orthoses (AFOs) have been developed for them to address the drop-foot gait. However, the currently available active AFOs usually have heavier mass, larger volume, and additional power sources, and almost all of the passive AFOs can achieve dorsiflexion assistance at the cost of making plantarflexion more difficult, which increases the wearer's metabolic cost of walking. This paper illustrates the development and validation of a passive AFO for walking propulsion and drop-foot prevention of individuals with a drop-foot gait. The AFO is primarily composed of a propulsion module, a drop-foot prevention module, and a support module. The propulsion module can detect the wearer's gait stages, and it can control the energy storage and release of an energy storage spring-A by switching the state of a clutch-A mechanism. The drop-foot prevention module is designed to correct the abnormal gait of individuals with a drop-foot gait during the swing phase. Experiments are conducted to evaluate the performance of the developed AFO. The experimental results demonstrate that during a gait cycle, reductions of 7.74%, 6.72%, and 16.36% of the average muscle activities of the gastrocnemius, soleus, and tibialis anterior are observed, respectively. The significance of this study is the development of a portable passive AFO that has the potential to provide plantarflexion assistance and dorsiflexion assistance for the wearers during the late stance phase and swing phase, respectively.

References

1.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking: Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.10.1016/S0966-6362(02)00068-1
2.
Nuckols
,
R. W.
,
Dick
,
T. J.
,
Beck
,
O. N.
, and
Sawicki
,
G. S.
,
2020
, “
Ultrasound Imaging Links Soleus Muscle Neuromechanics and Energetics During Human Walking With Elastic Ankle Exoskeletons
,”
Sci. Rep.
,
10
(
1
), p.
3604
.10.1038/s41598-020-60360-4
3.
Laver
,
K. E.
,
Lange
,
B.
,
George
,
S.
,
Deutsch
,
J. E.
,
Saposnik
,
G.
, and
Crotty
,
M.
,
2017
, “
Virtual Reality for Stroke Rehabilitation
,”
Cochrane Database Syst. Rev.
,
2018
(
1
), p.
CD008349
.10.1002/14651858.CD008349
4.
Stewart
,
J. D.
,
2008
, “
Foot Drop: Where, Why and What to Do?
,”
Pract. Neurol.
,
8
(
3
), pp.
158
169
.10.1136/jnnp.2008.149393
5.
Stoquart
,
G.
,
Detrembleur
,
C.
, and
Lejeune
,
T.
,
2012
, “
The Reasons Why Stroke Patients Expend so Much Energy to Walk Slowly
,”
Gait Posture
,
36
(
3
), pp.
409
413
.10.1016/j.gaitpost.2012.03.019
6.
Alam
,
M.
,
Mamat
,
A. B.
, and
Choudhury
,
I. A.
,
2014
, “
Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot
,”
Sci. World. J.
,
2014
(
2
), p.
867869
.10.1155/2014/867869
7.
Song
,
J.
,
Wei
,
J.
,
Yu
,
B.
,
Liu
,
C.
,
Ai
,
C.
, and
Zhang
,
J.
,
2023
, “
Configuration Design and Kinematic Performance Analysis of a Novel 4-DOF Parallel Ankle Rehabilitation Mechanism With Two Virtual Motion Centers
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
154
.10.1186/s10033-023-00977-4
8.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.10.1109/TNSRE.2003.823266
9.
Chen
,
B.
,
Zi
,
B.
,
Zeng
,
Y.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2018
, “
Ankle-Foot Orthoses for Rehabilitation and Reducing Metabolic Cost of Walking: Possibilities and Challenges
,”
Mechatronics
,
53
, pp.
241
250
.10.1016/j.mechatronics.2018.06.014
10.
Bulley
,
C.
,
Mercer
,
T. H.
,
Hooper
,
J. E.
,
Cowan
,
P.
,
Scott
,
S.
, and
van der Linden
,
M. L.
,
2015
, “
Experiences of Functional Electrical Stimulation (FES) and Ankle Foot Orthoses (AFOs) for Foot-Drop in People With Multiple Sclerosis
,”
Disabil. Rehabil.: Assistive Technol.
,
10
(
6
), pp.
458
467
.10.3109/17483107.2014.913713
11.
Everaert
,
D. G.
,
Thompson
,
A. K.
,
Chong
,
S. L.
, and
Stein
,
R. B.
,
2010
, “
Does Functional Electrical Stimulation for Foot Drop Strengthen Corticospinal Connections?
,”
Neurorehabilitation Neural Repair
,
24
(
2
), pp.
168
177
.10.1177/1545968309349939
12.
Shao
,
Y.
,
Zhang
,
W.
,
Su
,
Y.
, and
Ding
,
X.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.10.1016/j.mechmachtheory.2021.104323
13.
Chin
,
R.
,
Hsiao-Wecksler
,
E. T.
,
Loth
,
E.
,
Kogler
,
G.
,
Manwaring
,
S. D.
,
Tyson
,
S. N.
,
Shorter
,
K. A.
, and
Gilmer
,
J. N.
,
2009
, “
A Pneumatic Power Harvesting Ankle-Foot Orthosis to Prevent Foot-Drop
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
19
.10.1186/1743-0003-6-19
14.
Chen
,
B.
,
Zi
,
B.
,
Zhou
,
B.
, and
Wang
,
Z.
,
2022
, “
Implementation of Robotic Ankle–Foot Orthosis With an Impedance-Based Assist-As-Needed Control Strategy
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051001
.10.1115/1.4053218
15.
Zhou
,
Y.
, and
Liu
,
L.
,
2022
, “
Design, Analysis, and Control of a User-Adaptive Ankle Foot Orthosis
,”
ASME J. Med. Devices
,
16
(
4
), p.
044503
.10.1115/1.4055521
16.
Baker
,
E.
,
Voglewede
,
P.
,
Current
,
T.
, and
Silver-Thorn
,
B.
,
2020
, “
An Orthotic Joint Design for Enhancing Ankle Mobility With Ankle Foot Orthoses Use
,”
ASME J. Med. Devices
,
14
(
4
), p.
044501
.10.1115/1.4048615
17.
Elery
,
T.
,
Reznick
,
E.
,
Shearin
,
S.
,
McCain
,
K.
, and
Gregg
,
R. D.
,
2022
, “
Design and Initial Validation of a Multiple Degree-of-Freedom Joint for an Ankle-Foot Orthosis
,”
ASME J. Med. Devices
,
16
(
2
), p.
021001
.10.1115/1.4053200
18.
Awad
,
L. N.
,
Bae
,
J.
,
O'donnell
,
K.
,
De Rossi
,
S. M.
,
Hendron
,
K.
,
Sloot
,
L. H.
,
Kudzia
,
P.
,
Allen
,
S.
,
Holt
,
K. G.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Robotic Exosuit Improves Walking in Patients After Stroke
,”
Sci. Transl. Med.
,
9
(
400
), p.
eaai9084
.10.1126/scitranslmed.aai9084
19.
Takahashi
,
K. Z.
,
Lewek
,
M. D.
, and
Sawicki
,
G. S.
,
2015
, “
A Neuromechanics-Based Powered Ankle Exoskeleton to Assist Walking Post-Stroke: A Feasibility Study
,”
J. Neuroeng. Rehabil.
,
12
(
1
), p.
23
.10.1186/s12984-015-0015-7
20.
Yeung
,
L.-F.
,
Ockenfeld
,
C.
,
Pang
,
M.-K.
,
Wai
,
H.-W.
,
Soo
,
O.-Y.
,
Li
,
S.-W.
, and
Tong
,
K.-Y.
,
2017
, “
Design of an Exoskeleton Ankle Robot for Robot-Assisted Gait Training of Stroke Patients
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
, London, UK, July 17–20, pp.
211
215
.10.1109/ICORR.2017.8009248
21.
Yeung
,
L.-F.
,
Ockenfeld
,
C.
,
Pang
,
M.-K.
,
Wai
,
H.-W.
,
Soo
,
O.-Y.
,
Li
,
S.-W.
, and
Tong
,
K.-Y.
,
2018
, “
Randomized Controlled Trial of Robot-Assisted Gait Training With Dorsiflexion Assistance on Chronic Stroke Patients Wearing Ankle-Foot-Orthosis
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
51
.10.1186/s12984-018-0394-7
22.
Allen
,
D. P.
,
Little
,
R.
,
Laube
,
J.
,
Warren
,
J.
,
Voit
,
W.
, and
Gregg
,
R. D.
,
2021
, “
Towards an Ankle-Foot Orthosis Powered by a Dielectric Elastomer Actuator
,”
Mechatronics
,
76
, p.
102551
.10.1016/j.mechatronics.2021.102551
23.
Adiputra
,
D.
,
Rahman
,
M. A. A.
,
Ubaidillah
,
U.
, and
Mazlan
,
S. A.
,
2020
, “
Improving Passive Ankle Foot Orthosis System Using Estimated Ankle Velocity Reference
,”
IEEE Access
,
8
, pp.
194780
194794
.10.1109/ACCESS.2020.3033852
24.
Ramsey
,
J. A.
,
2011
, “
Development of a Method for Fabricating Polypropylene Non-Articulated Dorsiflexion Assist Ankle Foot Orthoses With Predetermined Stiffness
,”
Prosthet. Orthotics Int.
,
35
(
1
), pp.
54
69
.10.1177/0309364610394477
25.
Mavroidis
,
C.
,
Ranky
,
R. G.
,
Sivak
,
M. L.
,
Patritti
,
B. L.
,
DiPisa
,
J.
,
Caddle
,
A.
,
Gilhooly
,
K.
,
Govoni
,
L.
,
Sivak
,
S.
,
Lancia
,
M.
,
Drillio
,
R.
, and
Bonato
,
P.
,
2011
, “
Patient Specific Ankle-Foot Orthoses Using Rapid Prototyping
,”
J. Neuroeng. Rehabil.
,
8
(
1
), pp.
1
11
.10.1186/1743-0003-8-1
26.
Chu
,
T.-M.
,
Reddy
,
N. P.
, and
Padovan
,
J.
,
1995
, “
Three-Dimensional Finite Element Stress Analysis of the Polypropylene, Ankle-Foot Orthosis: Static Analysis
,”
Med. Eng. Phys.
,
17
(
5
), pp.
372
379
.10.1016/1350-4533(95)97317-I
27.
Darwich
,
A.
,
Nazha
,
H.
,
Sliman
,
A.
, and
Abbas
,
W.
,
2020
, “
Ankle–Foot Orthosis Design Between the Tradition and the Computerized Perspectives
,”
Int. J. Artif. Organs
,
43
(
5
), pp.
354
361
.10.1177/0391398819890348
28.
Yandell
,
M. B.
,
Tacca
,
J. R.
, and
Zelik
,
K. E.
,
2019
, “
Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
712
723
.10.1109/TNSRE.2019.2904924
29.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.10.1038/nature14288
30.
Deberg
,
L.
,
Taheri Andani
,
M.
,
Hosseinipour
,
M.
, and
Elahinia
,
M.
,
2014
, “
An SMA Passive Ankle Foot Orthosis: Design, Modeling, and Experimental Evaluation
,”
Smart Mater. Res.
,
2014
, pp.
1
11
.10.1155/2014/572094
31.
He
,
Q.
,
Shu
,
J.
,
Wang
,
J.
,
Lau
,
S. C.-Y.
,
Li
,
Z.
, and
Tong
,
R. K.-Y.
,
2022
, “
An Ankle Foot Orthosis (AFO) With Energy Recycling Mechanism to Prevent Foot Drop
,”
Proceedings of the TENCON 2022-2022 IEEE Region 10 Conference
(
TENCON
), Hong Kong, China, Nov. 1–4, pp.
1
5
.10.1109/TENCON55691.2022.9978002
32.
Oba
,
T.
,
Kadone
,
H.
,
Hassan
,
M.
, and
Suzuki
,
K.
,
2019
, “
Robotic Ankle–Foot Orthosis With a Variable Viscosity Link Using MR Fluid
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
495
504
.10.1109/TMECH.2019.2894406
33.
Shamaei
,
K.
,
Cenciarini
,
M.
, and
Dollar
,
A. M.
,
2011
, “
On the Mechanics of the Ankle in the Stance Phase of the Gait
,”
Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Boston, MA, Aug. 30–Sept. 3, pp.
8135
8140
.10.1109/IEMBS.2011.6092007
34.
Chen
,
T. L.-W.
,
Wang
,
Y.
,
Peng
,
Y.
,
Zhang
,
G.
,
Hong
,
T. T.-H.
, and
Zhang
,
M.
,
2023
, “
Dynamic Finite Element Analyses to Compare the Influences of Customised Total Talar Replacement and Total Ankle Arthroplasty on Foot Biomechanics During Gait
,”
J. Orthop. Transl.
,
38
, pp.
32
43
.10.1016/j.jot.2022.07.013
35.
Michael
,
J. M.
,
Golshani
,
A.
,
Gargac
,
S.
, and
Goswami
,
T.
,
2008
, “
Biomechanics of the Ankle Joint and Clinical Outcomes of Total Ankle Replacement
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
4
), pp.
276
294
.10.1016/j.jmbbm.2008.01.005
36.
Cai
,
M. J.
,
Liao
,
W.-H.
, and
Cao
,
J. Y.
,
2019
, “
A Smart Harvester for Capturing Energy From Human Ankle Dorsiflexion With Reduced User Effort
,”
Smart Mater. Struct.
,
28
(
1
), p.
015026
.10.1088/1361-665X/aaed66
37.
Chen
,
B.
,
Zheng
,
C. W.
,
Zi
,
B.
, and
Zhao
,
P.
,
2022
, “
Design and Implementation of Knee-Ankle Exoskeleton for Energy Harvesting and Walking Assistance
,”
Smart Mater. Struct.
,
31
(
12
), p.
125003
.10.1088/1361-665X/ac9dd0
38.
Fickey
,
S. N.
,
Browne
,
M. G.
, and
Franz
,
J. R.
,
2018
, “
Biomechanical Effects of Augmented Ankle Power Output During Human Walking
,”
J. Exp. Biol.
,
221
(
22
), p.
jeb182113
.10.1242/jeb.182113
39.
Meng
,
M.
,
Wang
,
J.
,
Huang
,
H.
,
Liu
,
X.
,
Zhang
,
J.
, and
Li
,
Z.
,
2023
, “
3D Printing Metal Implants in Orthopedic Surgery: Methods, Applications and Future Prospects
,”
J. Orthop. Transl.
,
42
, pp.
94
112
.10.1016/j.jot.2023.08.004
40.
Chen
,
B.
,
Ma
,
H.
,
Qin
,
L. Y.
,
Gao
,
F.
,
Chan
,
K.-M.
,
Law
,
S.-W.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2016
, “
Recent Developments and Challenges of Lower Extremity Exoskeletons
,”
J. Orthop. Transl.
,
5
, pp.
26
37
.10.1016/j.jot.2015.09.007
You do not currently have access to this content.