Abstract

Hemorrhage can lead to shock and even death of patients, making one of the main risks in surgical procedures. Most traditional clip appliers are rigid, have limited flexibility, and can only fire a single clip within each insertion, which cannot meet the needs of surgeons to efficiently and flexibly control bleeding vessels. In this study, a novel hand-held Hem-o-lok clip applier is proposed, which is designed to have a high flexibility and allow multiple fires of clips. The wrist at the end effector consists of discrete joints and a flexible shaft, allowing bending in two directions. The tong head at the end effector enables multiple fires of hemostats and can be delivered to different positions for clamping blood vessels and human tissues. It also can be driven to rotate by the flexible shaft. Additionally, an ergonomic handle is designed to control the multiple degrees-of-freedom (DOFs) movements of the instrument tip. Finally, the effectiveness of the entire system is evaluated through performance experiments. The bending angle of end effector was about ±70 deg in both directions (yaw and pitch), and the rotation angle was ±160 deg. The measured gripping forces of the applier ranged from 16.70 N to 24.93 N, and the average time to complete three consecutive clamping was 8.67 s. The proposed clip applier could improve the hemostatic efficiency and allow an intuitive and flexible operation in the meantime.

References

1.
Wexner
,
S. D.
,
Bergamaschi
,
R.
,
Lacy
,
A.
,
Udo
,
J.
,
Brölmann
,
H.
,
Kennedy
,
R. H.
, and
John
,
H.
,
2009
, “
The Current Status of Robotic Pelvic Surgery: Results of a Multinational Interdisciplinary Consensus Conference
,”
Surg. Endosc.
,
23
(
2
), pp.
438
443
.10.1007/s00464-008-0202-8
2.
Krupa
,
A.
,
Morel
,
G.
, and
Mathelin
,
M. D.
,
2002
, “
Achieving High Precision Laparoscopic Manipulation Through Adaptive Force Control
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
, May 11–15, pp.
1864
1869
.10.1109/ROBOT.2002.1014812
3.
Tadano
,
K.
, and
Kawashima
,
K.
,
2006
, “
Development of 4-DOFs Forceps With Force Sensing Using Pneumatic Servo System
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA
,
Orlando, FL
, May 15–19, pp.
2250
2255
.10.1109/ROBOT.2006.1642038
4.
Takahashi
,
H.
,
Warisawa
,
S.
,
Mitsuishi
,
M.
,
Arata
,
J.
, and
Hashizume
,
M.
,
2006
, “
Development of High Dexterity Minimally Invasive Surgical System With Augmented Force Feedback Capability
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Pisa, Italy
, Feb. 20–22, pp.
284
289
.10.1109/BIOROB.2006.1639100
5.
Ben-Ur
,
E.
, and
Kenneth Salisbury
,
J.
,
2000
, “
Development of a 5-DOF Force Feedback Laparoscopic Interface for Simulation and Telesurgery
,”
Proceedings of the Digitization of the Battlespace V and Battlefield Biomedical Technologies II
,
Orlando, FL
, Apr. 24–27, pp.
274
285
.10.1117/12.395050
6.
Amato
,
F.
,
Carbone
,
M.
,
Cosentino
,
C.
,
Merola
,
A.
,
Morelli
,
M.
, and
Zullo
,
F.
,
2006
, “
A Versatile Mechatronic Tool for Minimally Invasive Surgery
,”
1st IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Pisa, Italy
, Feb. 20–22, pp.
192
197
.10.1109/BIOROB.2006.1639083
7.
Saracino
,
A.
,
Deguet
,
A.
,
Staderini
,
F.
,
Boushaki
,
M. N.
,
Cianchi
,
F.
,
Menciassi
,
A.
, and
Sinibaldi
,
E.
,
2019
, “
Haptic Feedback in the da Vinci Research Kit (dVRK): A User Study Based on Grasping, Palpation, and Incision Tasks
,”
Int. J. Med. Rob. Comput. Assisted Surg.: MRCAS
,
15
(
4
), p.
e1999
.10.1002/rcs.1999
8.
Prewitt
,
R.
,
Bochkarev
,
V.
,
McBride
,
C. L.
,
Kinney
,
S.
, and
Oleynikov
,
D.
,
2008
, “
The Patterns and Costs of the Da Vinci Robotic Surgery System in a Large Academic Institution
,”
J. Rob. Surg.
,
2
(
1
), pp.
17
20
.10.1007/s11701-008-0075-9
9.
Kommu
,
S. S.
, and
Rane
,
A.
,
2009
, “
Devices for Laparoendoscopic Single-Site Surgery in Urology
,”
Expert Rev. Med. Devices
,
6
(
1
), pp.
95
103
.10.1586/17434440.6.1.95
10.
Yoshiki
,
N.
,
2016
, “
Single-Incision Laparoscopic Myomectomy: A Review of the Literature and Available Evidence
,”
Gynecol. Minimally Invasive Ther.
,
5
(
2
), pp.
54
63
.10.1016/j.gmit.2016.02.004
11.
Awtar
,
S.
,
Trutna
,
T. T.
,
Abani
,
R.
,
Nielsen
,
J. M.
, and
Mansfield
,
A. B.
,
2009
, “
Flexdex: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Actuation
,” ASME Paper No. DETC2009-87824. 10.1115/DETC2009-87824
12.
Anderson
,
P. L.
,
Lathrop
,
R. A.
, and
Webster Iii
,
R. J.
,
2016
, “
Robot-Like Dexterity Without Computers and Motors: A Review of Hand-Held Laparoscopic Instruments With Wrist-Like Tip Articulation
,”
Expert Rev. Med. Devices
,
13
(
7
), pp.
661
672
.10.1586/17434440.2016.1146585
13.
Criss
,
C. N.
,
Ralls
,
M. W.
,
Johnson
,
K. N.
,
Awtar
,
S.
,
Jarboe
,
M. D.
, and
Geiger
,
J. D.
,
2017
, “
A Novel Intuitively Controlled Articulating Instrument for Reoperative Foregut Surgery: A Case Report
,”
J. Laparoendosc. Adv. Surg. Tech.
,
27
(
9
), pp.
983
986
.10.1089/lap.2017.0107
14.
Darwich
,
I.
,
Abuassi
,
M.
,
Aliyev
,
R.
,
Scheidt
,
M.
,
Alkadri
,
M. A.
,
Hees
,
A.
,
Demirel-Darwich
,
S.
,
Chand
,
M.
, and
Willeke
,
F.
,
2022
, “
Early Experience With the ARTISENTIAL(®) Articulated Instruments in Laparoscopic Low Anterior Resection With TME
,”
Tech. Coloproctol.
,
26
(
5
), pp.
373
386
.10.1007/s10151-022-02588-y
15.
Francis
,
P.
,
Eastwood
,
K. W.
,
Bodani
,
V.
,
Price
,
K.
,
Upadhyaya
,
K.
,
Podolsky
,
D.
,
Azimian
,
H.
,
Looi
,
T.
, and
Drake
,
J.
,
2017
, “
Miniaturized Instruments for the da Vinci Research Kit: Design and Implementation of Custom Continuum Tools
,”
IEEE Rob. Autom. Mag.
,
24
(
2
), pp.
24
33
.10.1109/MRA.2017.2680547
16.
Lu
,
Y.-F.
,
Fan
,
D.-P.
,
Liu
,
H.
, and
Hei
,
M.
,
2015
, “
Transmission Capability of Precise Cable Drive Including Bending Rigidity
,”
Mech. Mach. Theory
,
94
, pp.
132
140
.10.1016/j.mechmachtheory.2015.07.004
17.
Van Veelen
,
M. A.
,
Goossens
,
R. H. M.
,
Meijer
,
D. W.
, and
Snijders
,
C. J.
,
2000
, “
New Ergonomic Design Criteria for Handles of Laparoscopic Dissection Forceps
,”
Proceedings of 8th International Congress of the European-Association-for-Endoscopic-Surgery
, June 28–July 1, pp.
533
539
.10.1089/10926420150502896
18.
Huan
,
Y.
,
Tamadon
,
I.
,
Scatena
,
C.
,
Cela
,
V.
,
Naccarato
,
A. G.
,
Menciassi
,
A.
, and
Sinibaldi
,
E.
,
2021
, “
Soft Graspers for Safe and Effective Tissue Clutching in Minimally Invasive Surgery
,”
IEEE Trans. Biomed. Eng.
,
68
(
1
), pp.
56
67
.10.1109/TBME.2020.2996965
19.
Yang
,
Y.
,
Kong
,
K.
,
Li
,
J.
,
Wang
,
S.
, and
Li
,
J.
,
2019
, “
Design and Evaluation of a Dexterous and Modular Hand-Held Surgical Robot for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
13
(
4
), p.
041005
.10.1115/1.4044527
20.
Liang
,
Y.
,
Du
,
Z.
,
Wang
,
W.
, and
Sun
,
L.
,
2017
, “
A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots
,”
Sensors
,
17
(
10
), p.
2257
.10.3390/s17102257
21.
Xue
,
R.
,
Ren
,
B.
,
Yan
,
Z.
, and
Du
,
Z.
,
2017
, “
A Cable-Pulley System Modeling Based Position Compensation Control for a Laparoscope Surgical Robot
,”
Mech. Mach. Theory
,
118
, pp.
283
299
.10.1016/j.mechmachtheory.2017.08.006
22.
Cahn
,
J.
,
2022
, “
Point-of-Use Instrument Cleaning and Steam Sterilization
,”
AORN J.
,
116
(
1
), pp.
61
69
.10.1002/aorn.13717
23.
Croke
,
L.
,
2020
, “
Guideline for Care and Cleaning of Surgical Instruments
,”
AORN J.
,
112
(
3
), pp.
P9
P11
.10.1002/aorn.13187
You do not currently have access to this content.