Abstract

The results of in vitro dynamic thrombogenicity testing of biomaterials and medical devices can be significantly impacted by test conditions. To develop and standardize a robust dynamic in vitro thrombogenicity tool, the key test parameters need to be appropriately evaluated and optimized. We used a flow loop test system previously developed in our laboratory to investigate the effects of sample length and the number of samples per test loop on the thrombogenicity results. Porcine blood heparinized to a donor-specific target concentration was recirculated at room temperature through polyvinyl chloride (PVC) tubing loops containing test materials for 1 h at 200 mL/min. Four test materials (polytetrafluoroethylene (PTFE), latex, PVC, and silicone) with various thrombotic potentials in two sample lengths (12 and 18 cm) were examined. For the 12-cm long materials, two different test configurations (one and two samples per loop) were compared. Thrombogenicity was assessed through percent thrombus surface coverage, thrombus weight, and platelet count reduction in the blood. The test system was able to effectively differentiate the thrombogenicity profile of the materials (latex > silicone > PVC ≥ PTFE) at all test configurations. Increasing test sample length by 50% did not significantly impact the test results as both 12 and 18 cm sample lengths were shown to equally differentiate thrombotic potentials between the materials. The addition of a second test sample to each loop did not increase the test sensitivity and may produce confounding results, and thus a single test sample per loop is recommended.

References

1.
Wiper
,
A.
,
Hashmi
,
I.
,
Srivastava
,
V.
,
Shaktawat
,
S.
,
Sogliani
,
F.
,
Tang
,
G.
,
Chauhan
,
A.
, et al.,
2014
, “
Guide Wire Thrombus Formation During Trans-Femoral TAVI
,”
Cardiovasc. Revasc. Med.
,
15
(
6–7
), pp.
360
361
.10.1016/j.carrev.2014.04.001
2.
Chin
,
T.
,
Priyesh
,
P.
, and
Islam
,
A. M.
,
2017
, “
A Novel Approach to Extraction of a Large Thrombus on the Intraventricular Guide-Wire During Transcatheter Aortic Valve Replacement
,”
Catheter. Cardiovasc. Interventions
,
89
(
3
), pp.
495
498
.10.1002/ccd.26113
3.
Scalone
,
G.
,
Brugaletta
,
S.
,
Garcia-Garcia
,
H. M.
,
Martin-Yuste
,
V.
,
Azpeitia
,
Y.
,
Otsuki
,
S.
,
Gomez
,
O.
, et al.,
2015
, “
Frequency and Predictors of Thrombus Inside the Guiding Catheter During Interventional Procedures: An Optical Coherence Tomography Study
,”
Int. J. Cardiovasc. Imaging
,
31
(
2
), pp.
239
246
.10.1007/s10554-014-0544-3
4.
Gobeil
,
F.
,
Juneau
,
C.
, and
Plante
,
S.
,
2002
, “
Thrombus Formation on Guide Wires During Routine PTCA Procedures: A Scanning Electron Microscopic Evaluation
,”
Can. J. Cardiol.
,
18
(
3
), pp.
263
269
.https://pubmed.ncbi.nlm.nih.gov/11907615/
5.
Eckman
,
P. M.
, and
John
,
R.
,
2012
, “
Bleeding and Thrombosis in Patients With Continuous-Flow Ventricular Assist Devices
,”
Circulation
,
125
(
24
), pp.
3038
3047
.10.1161/CIRCULATIONAHA.111.040246
6.
de Mel
,
A.
,
Cousins
,
B. G.
, and
Seifalian
,
A. M.
,
2012
, “
Surface Modification of Biomaterials: A Quest for Blood Compatibility
,”
Int. J. Biomater.
,
2012
, pp.
1
8
.10.1155/2012/707863
7.
Li
,
S.
, and
Henry
,
J. J.
,
2011
, “
Nonthrombogenic Approaches to Cardiovascular Bioengineering
,”
Annu. Rev. Biomed. Eng.
,
13
(
1
), pp.
451
475
.10.1146/annurev-bioeng-071910-124733
8.
Cunningham
,
E. J.
,
Fiorella
,
D.
, and
Masaryk
,
T. J.
,
2005
, “
Neurovascular Rescue
,”
Semin. Vasc. Surg.
,
18
(
2
), pp.
101
109
.10.1053/j.semvascsurg.2005.04.007
9.
U.S. Food and Drug Administration
,
2020
, “Guidance for Industry and Food and Drug Administration Staff: Use of International Standard ISO 10993-1, “
Biological Evaluation of Medical Devices - Part 1: Evaluation and Testing Within a Risk Management Process
”,”
U.S. Food and Drug Administration (FDA)
,
Silver Spring, MD
.https://www.fda.gov/media/85865/download
10.
International Organization for Standardization
,
2017
,
ISO 10993-4: Biological Evaluation of Medical Devices - Part 4: Selection of Tests for Interactions With Blood
,
The International Organization for Standardization (ISO)
,
Arlington, VA
.
11.
Grove
,
K.
,
Deline
,
S. M.
,
Schatz
,
T. F.
,
Howard
,
S. E.
,
Porter
,
D.
, and
Smith
,
M. E.
,
2017
, “
Thrombogenicity Testing of Medical Devices in a Minimally Heparinized Ovine Blood Loop
,”
ASME J. Med. Device
,
11
(
2
), p.
021008
.10.1115/1.4035724
12.
Wolf
,
M. F.
, and
Anderson
,
J. M.
,
2020
, “
Practical Approach to Blood Compatibility Assessments: General Considerations and Standards
,”
Biocompatibility and Performance of Medical Devices
,
J. P.
Boutrand
, ed.,
Woodhead Publishing
, Cambridge, UK, pp.
167
205
.10.1016/B978-0-08-102643-4.00008-2
13.
Jamiolkowski
,
M. A.
,
Hartung
,
M. C.
,
Malinauskas
,
R. A.
, and
Lu
,
Q.
,
2020
, “
An In Vitro Blood Flow Loop System for Evaluating the Thrombogenicity of Medical Devices and Biomaterials
,”
ASAIO J.
,
66
(
2
), pp.
183
189
.10.1097/MAT.0000000000000958
14.
Jamiolkowski
,
M. A.
,
Patel
,
M.
,
Golding
,
M. D.
,
Malinauskas
,
R. A.
, and
Lu
,
Q.
,
2022
, “
Comparison of Animal and Human Blood for In Vitro Dynamic Thrombogenicity Testing of Biomaterials
,”
Artif. Organs
,
46
(
12
), pp.
2400
2411
.10.1111/aor.14366
15.
Patel
,
M.
,
Jamiolkowski
,
M. A.
,
Vejendla
,
A.
,
Bentley
,
V.
,
Malinauskas
,
R. A.
, and
Lu
,
Q.
,
2023
, “
Effect of Temperature on Thrombogenicity Testing of Biomaterials in an In Vitro Dynamic Flow Loop System
,”
ASAIO J.
,
69
(
6
), pp.
576
582
.10.1097/MAT.0000000000001897
16.
Krajewski
,
S.
,
Neumann
,
B.
,
Kurz
,
J.
,
Perle
,
N.
,
Avci-Adali
,
M.
,
Cattaneo
,
G.
, and
Wendel
,
H. P.
,
2015
, “
Preclinical Evaluation of the Thrombogenicity and Endothelialization of Bare Metal and Surface-Coated Neurovascular Stents
,”
AJNR Am. J. Neuroradiol.
,
36
(
1
), pp.
133
139
.10.3174/ajnr.A4109
17.
Stang
,
K.
,
Krajewski
,
S.
,
Neumann
,
B.
,
Kurz
,
J.
,
Post
,
M.
,
Stoppelkamp
,
S.
,
Fennrich
,
S.
, et al.,
2014
, “
Hemocompatibility Testing According to ISO 10993-4: Discrimination Between Pyrogen- and Device-Induced Hemostatic Activation
,”
Mater. Sci. Eng. C
,
42
, pp.
422
428
.10.1016/j.msec.2014.05.070
18.
van Oeveren
,
W.
,
Tielliu
,
I. F.
, and
de Hart
,
J.
,
2012
, “
Comparison of Modified Chandler, Roller Pump, and Ball Valve Circulation Models for In Vitro Testing in High Blood Flow Conditions: Application in Thrombogenicity Testing of Different Materials for Vascular Applications
,”
Int. J. Biomater.
,
2012
, pp.
1
7
.10.1155/2012/673163
19.
Walker
,
E. K.
,
Nauman
,
E. A.
,
Allain
,
J. P.
, and
Stanciu
,
L. A.
,
2015
, “
An In Vitro Model for Preclinical Testing of Thrombogenicity of Resorbable Metallic Stents
,”
J. Biomed. Mater. Res. A
,
103
(
6
), pp.
2118
2125
.10.1002/jbm.a.35348
20.
Böswald
,
M.
,
Lugauer
,
S.
,
Bechert
,
T.
,
Greil
,
J.
,
Regenfus
,
A.
, and
Guggenbichler
,
J.
,
1999
, “
Thrombogenicity Testing of Central Venous Catheters In Vitro
,”
Infection
,
27
(
S1
), pp.
S30
S33
.10.1007/BF02561614
21.
Nguyen
,
K. T.
,
Su
,
S. H.
,
Sheng
,
A.
,
Wawro
,
D.
,
Schwade
,
N. D.
,
Brouse
,
C. F.
,
Greilich
,
P. E.
, et al.,
2003
, “
In Vitro Hemocompatibility Studies of Drug-Loaded Poly-(l-Lactic Acid) Fibers
,”
Biomaterials
,
24
(
28
), pp.
5191
5201
.10.1016/S0142-9612(03)00451-4
22.
Paul
,
R.
,
Marseille
,
O.
,
Hintze
,
E.
,
Huber
,
L.
,
Schima
,
H.
,
Reul
,
H.
, and
Rau
,
G.
,
1998
, “
In Vitro Thrombogenicity Testing of Artificial Organs
,”
J. Artif. Organs
,
21
(
9
), pp.
548
552
.10.1177/039139889802100910
23.
Blok
,
S. L. J.
,
Oeveren
,
W.
, and
Engels
,
G. E.
,
2019
, “
The Optimal Incubation Time for In Vitro Hemocompatibility Testing: Assessment Using Polymer Reference Materials Under Pulsatile Flow With Physiological Wall Shear Stress Conditions
,”
J. Biomed. Mater. Res., Part B
,
107
(
7
), pp.
2335
2342
.10.1002/jbm.b.34326
24.
Olsen
,
A. L.
, and
Long
,
M.
,
2018
, “
Comparison of Catheter Thrombogenicity in a Modified Chandler Loop Model Using Goat Blood
,”
J. Biomed. Mater. Res. A
,
106
(
12
), pp.
3143
3151
.10.1002/jbm.a.36509
25.
Girdhar
,
G.
,
Andersen
,
A.
,
Pangerl
,
E.
,
Jahanbekam
,
R.
,
Ubl
,
S.
,
Nguyen
,
K.
,
Wainwright
,
J.
, and
Wolf
,
M. F.
,
2018
, “
Thrombogenicity Assessment of Pipeline Flex, Pipeline Shield, and FRED Flow Diverters in an In Vitro Human Blood Physiological Flow Loop Model
,”
J. Biomed. Mater. Res. A
,
106
(
12
), pp.
3195
3202
.10.1002/jbm.a.36514
26.
Weaver
,
J. D.
, and
Ku
,
D. N.
,
2012
, “
Biomaterial Testing for Covered Stent Membranes: Evaluating Thrombosis and Restenosis Potential
,”
J. Biomed. Mater. Res. B
,
100B
(
1
), pp.
103
110
.10.1002/jbm.b.31927
27.
ASTM F2888,
2019
,
Standard Practice for Platelet Leukocyte Count—An In Vitro Measure for Hemocompatibility Assessment of Cardiovascular Materials
,
ASTM International
,
West Conshohocken, PA
.
28.
Ogawa
,
S.
,
Ohnishi
,
T.
,
Hosokawa
,
K.
,
Szlam
,
F.
,
Chen
,
E. P.
, and
Tanaka
,
K. A.
,
2013
, “
Haemodilution-Induced Changes in Coagulation and Effects of Haemostatic Components Under Flow Conditions
,”
Br. J. Anaesth.
,
111
(
6
), pp.
1013
1023
.10.1093/bja/aet229
29.
Pretorius
,
E.
,
Oberholzer
,
H. M.
,
van der Spuy
,
W. J.
, and
Franz
,
R. C.
,
2011
, “
Comparing Techniques: The Use of Recalcified Plasma in Comparison With Citrated Plasma Alone and in Combination With Thrombin in Ultrastructural Studies
,”
Hematology
,
16
(
6
), pp.
337
340
.10.1179/102453311X13127324303515
30.
Pelagalli
,
A.
,
Belisario
,
M. A.
,
Tafuri
,
S.
,
Lombardi
,
P.
,
d'Angelo
,
D.
,
Avallone
,
L.
, and
Staiano
,
N.
,
2003
, “
Adhesive Properties of Platelets From Different Animal Species
,”
J. Comp. Pathol.
,
128
(
2–3
), pp.
127
131
.10.1053/jcpa.2002.0615
31.
Goodman
,
S. L.
,
1999
, “
Sheep, Pig, and Human Platelet-Material Interactions With Model Cardiovascular Biomaterials
,”
J. Biomed. Mater. Res.
,
45
(
3
), pp.
240
250
.10.1002/(SICI)1097-4636(19990605)45:3<240::AID-JBM12>3.0.CO;2-C
32.
Chan
,
C. H. H.
,
Pieper
,
I. L.
,
Robinson
,
C. R.
,
Friedmann
,
Y.
,
Kanamarlapudi
,
V.
, and
Thornton
,
C. A.
,
2017
, “
Shear Stress-Induced Total Blood Trauma in Multiple Species
,”
Artif. Organs
,
41
(
10
), pp.
934
947
.10.1111/aor.12932
You do not currently have access to this content.