Abstract

This article introduces the design, methods, and use cases of a novel gravity augmented additive manufacturing (GAAM) approach to fused filament fabrication (FFF) using a novel seven degree-of-freedom (DoF) delta robotic system. Capable of rotating parts and approaching the workpiece with the deposition head from user-specified or algorithm-determined angles, this system allows users the design freedom to create objects with self-supporting capability, while improving the performance of three-dimensional (3D) printed components. Additionally, this system and the methods of operation described below allow users to create objects that are otherwise impossible or impractical to construct using traditional three axis FFF 3D printing, while maintaining compatibility with existing G-code preparation techniques. Finally, this more flexible 3D printing system has advanced applications in generating patient specific objects, which may benefit from more highly specialized toolpaths and design freedom afforded by this system.

References

1.
Yakovlev
,
A. A.
,
Gushchin
,
I. A.
,
Drobotov
,
A. V.
, and
Torubarov
,
I. S.
,
2021
, “
Study of the Multi-Axis FFF 3D Printing Process
,” Institute of Electrical Electronics Engineers (
IEEE
), Moradabad, India, Dec. 4–5, pp.
262
266
.10.1109/SMART50582.2020.9336803
2.
Ahlers
,
D.
,
Wasserfall
,
F.
,
Hendrich
,
N.
,
Zhang
,
J.
,
Chakraborty
,
D.
,
Aneesh Reddy
,
B.
,
Roy Choudhury
,
A.
, et al.,
2019
, “
Development of a Hybrid Rapid Prototyping System Using Low-Cost Fused Deposition Modeling and Five-Axis Machining
,”
CAD Comput. Aided Des.
,
214
(
11
), pp.
51
63
.
3.
Wang
,
M.
,
Zhang
,
H.
,
Hu
,
Q.
,
Liu
,
D.
, and
Lammer
,
H.
,
2019
, “
Research and Implementation of a Non-Supporting 3D Printing Method Based on 5-Axis Dynamic Slice Algorithm
,”
Rob. Comput.-Integr. Manuf.
,
57
, pp. 496–505.10.1016/j.rcim.2019.01.007
4.
Dai
,
C.
,
Wang
,
C. C. L.
,
Wu
,
C.
,
Lefebvre
,
S.
,
Fang
,
G.
, and
Liu
,
Y. J.
,
2018
, “
Support-Free Volume Printing by Multi-Axis Motion
,”
ACM Trans. Graph.
,
37
(
4
), pp. 1–14.10.1145/3197517.3201342
5.
Wang
,
L.
, and
Iida
,
F.
,
2015
, “
Deformation in Soft-Matter Robotics: A Categorization and Quantitative Characterization
,”
IEEE Robot. Autom. Mag.
,
22
, pp.
125
139
.10.1109/MRA.2015.2448277
6.
Lee
,
W. C.
,
Wei
,
C. C.
, and
Chung
,
S. C.
,
2014
, “
Development of a Hybrid Rapid Prototyping System Using Low-Cost Fused Deposition Modeling and Five-Axis Machining
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2366
2374
.10.1016/j.jmatprotec.2014.05.004
7.
Ahlers
,
D.
,
Wasserfall
,
F.
,
Hendrich
,
N.
, and
Zhang
,
J.
,
2019
, “
3D Printing of Nonplanar Layers for Smooth Surface Generation
,”
IEEE International Conference on Automation Science and Engineering
, Vancouver, BC, Canada, Aug. 22–26, pp.
1737
1743
.10.1109/COASE.2019.8843116
8.
Jin
,
Y.
,
Du
,
J.
,
He
,
Y.
, and
Fu
,
G.
,
2017
, “
Modeling and Process Planning for Curved Layer Fused Deposition
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
273
285
.10.1007/s00170-016-9743-5
9.
Coupek
,
D.
,
Friedrich
,
J.
,
Battran
,
D.
, and
Riedel
,
O.
,
2018
, “
Reduction of Support Structures and Building Time by Optimized Path Planning Algorithms in Multi-Axis Additive Manufacturing
,”
Procedia CIRP
,
67
pp.
221
226
.10.1016/j.procir.2017.12.203
10.
Avdeev
,
A.
,
Shvets
,
A.
,
Gushchin
,
I.
,
Torubarov
,
I.
,
Drobotov
,
A.
,
Makarov
,
A.
,
Plotnikov
,
A.
, and
Serdobintsev
,
Y.
,
2019
, “
Strength Increasing Additive Manufacturing Fused Filament Fabrication Technology, Based on Spiral Toolpath Material Deposition
,”
Machines
,
7
(
3
), p. 57.10.3390/machines7030057
11.
Reeser
,
K.
,
Conlon
,
C.
, and
Doiron
,
A. L.
,
2019
, “
Triangle Mesh Slicing and Contour Construction for Three-Dimensional Printing on a Rotating Mandrel
,”
Comput. Res. Repository
, arXiv:1910.04037.10.48550/arXiv.1910.04037
12.
Lim
,
S.
,
Buswell
,
R. A.
,
Valentine
,
P. J.
,
Piker
,
D.
,
Austin
,
S. A.
, and
De Kestelier
,
X.
,
2016
, “
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
,”
Addit. Manuf.
,
12
, pp.
216
230
.10.1016/j.addma.2016.06.004
13.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3149
3159
.10.1007/s00170-018-1772-9
14.
Fry
,
N. R.
,
Richardson
,
R. C.
, and
Boyle
,
J. H.
,
2020
, “
Robotic Additive Manufacturing System for Dynamic Build Orientations
,”
Rapid Prototyping J.
,
26
(
4
), pp.
659
667
.10.1108/RPJ-09-2019-0243
You do not currently have access to this content.