Abstract

Traditional cell culturing methods are limited in their ability to supply growth medium to cells within scaffolds. To address this, we developed a custom perfusion bioreactor that allows for dynamic medium supply to encapsulated or seeded cells. Our custom-designed bioreactor improves the in vivo stimuli and conditions, which may enhance cell viability and proliferation performance. Some of the efforts include using dual medium tanks to replace the medium without stopping perfusion and a newly designed perfusion chamber that can accommodate an array of cassettes allowing for a wide assortment of scaffold shapes and sizes. In this paper, we explored the response of fluid flow to certain types of scaffold pore geometries and porosities using simulation and experimental approaches. Various pore geometries were considered, such as uniform triangular, square, diamond, circular, and honeycomb having uniform and variable sizes. Finally, bone tissue architecture was mimicked and simulated to identify the impact of fluid flow. Based on the results, optimum pore geometry for scaffolds were determined. We explored real-time fluid flow response on scaffolds fabricated with 8% Alginate, 4% Alginate-4% Carboxymethyl Cellulose (CMC), and 2% Alginate-6% CMC incubated, allowing a constant fluid flow for various periods such as 1, 2, 4, and 8 h. The change of fabricated scaffolds was determined in terms of swelling rate, i.e., change of filament width and material diffusion, i.e., comparison of dry material weight before and after incubation. This comparative study can assist in application-based materials selection suitable for incubating in a perfusion bioreactor.

References

1.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.10.1038/nbt.2958
2.
Flaibani
,
M.
,
Luni
,
C.
,
Sbalchiero
,
E.
, and
Elvassore
,
N.
,
2009
, “
Flow Cytometric Cell Cycle Analysis of Muscle Precursor Cells Cultured Within 3D Scaffolds in a Perfusion Bioreactor
,”
Biotechnol. Prog.
,
25
(
1
), pp.
286
295
.10.1002/btpr.40
3.
Mueller
,
S. M.
,
Mizuno
,
S.
,
Gerstenfeld
,
L. C.
, and
Glowacki
,
J.
,
1999
, “
Medium Perfusion Enhances Osteogenesis by Murine Osteosarcoma Cells in Three‐Dimensional Collagen Sponges
,”
J. Bone Miner. Res.
,
14
(
12
), pp.
2118
2126
.10.1359/jbmr.1999.14.12.2118
4.
Bancroft
,
G. N.
,
Sikavitsas
,
V. I.
, and
Mikos
,
A. G.
,
2003
, “
Technical Note: Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications
,”
Tissue Eng.
,
9
(
3
), pp.
549
554
.10.1089/107632703322066723
5.
Janssen
,
F. W.
,
Oostra
,
J.
,
van Oorschot
,
A.
, and
van Blitterswijk
,
C. A.
,
2006
, “
A Perfusion Bioreactor System Capable of Producing Clinically Relevant Volumes of Tissue-Engineered Bone: In Vivo Bone Formation Showing Proof of Concept
,”
Biomaterials
,
27
(
3
), pp.
315
323
.10.1016/j.biomaterials.2005.07.044
6.
Bartnikowski
,
M.
,
Klein
,
T. J.
,
Melchels
,
F. P.
, and
Woodruff
,
M. A.
,
2014
, “
Effects of Scaffold Architecture on Mechanical Characteristics and Osteoblast Response to Static and Perfusion Bioreactor Cultures
,”
Biotechnol. Bioeng.
,
111
(
7
), pp.
1440
1451
.10.1002/bit.25200
7.
Mironov
,
V.
,
Kasyanov
,
V.
, and
Markwald
,
R. R.
,
2011
, “
Organ Printing: From Bioprinter to Organ Biofabrication Line
,”
Curr. Opinion Biotechnol.
,
22
(
5
), pp.
667
673
.10.1016/j.copbio.2011.02.006
8.
Mironov
,
V.
,
Kasyanov
,
V.
,
Drake
,
C.
, and
Markwald
,
R. R.
,
2008
, “
Organ Printing: Promises and Challenges
,”
Regenerative Med.
,
3
(
1
), pp.
93
103
.10.2217/17460751.3.1.93
9.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
10.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Sperling
,
J. S.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr
,
2000
, “
New Pulsatile Bioreactor for In Vitro Formation of Tissue Engineered Heart Valves
,”
Tissue Eng.
,
6
(
1
), pp.
75
79
.10.1089/107632700320919
11.
Dumont
,
K.
,
Yperman
,
J.
,
Verbeken
,
E.
,
Segers
,
P.
,
Meuris
,
B.
,
Vandenberghe
,
S.
,
Flameng
,
W.
, and
Verdonck
,
P. R.
,
2002
, “
Design of a New Pulsatile Bioreactor for Tissue Engineered Aortic Heart Valve Formation
,”
Artif. Organs
,
26
(
8
), pp.
710
714
.10.1046/j.1525-1594.2002.06931_3.x
12.
Hutmacher
,
D. W.
, and
Singh
,
H.
,
2008
, “
Computational Fluid Dynamics for Improved Bioreactor Design and 3D Culture
,”
Trends Biotechnol.
,
26
(
4
), pp.
166
172
.10.1016/j.tibtech.2007.11.012
13.
Hossain
,
M. S.
,
Bergstrom
,
D.
, and
Chen
,
X.
,
2015
, “
Modelling and Simulation of the Chondrocyte Cell Growth, Glucose Consumption and Lactate Production Within a Porous Tissue Scaffold Inside a Perfusion Bioreactor
,”
Biotechnol. Rep.
,
5
, pp.
55
62
.10.1016/j.btre.2014.12.002
14.
Hidalgo‐Bastida
,
L. A.
,
Thirunavukkarasu
,
S.
,
Griffiths
,
S.
,
Cartmell
,
S. H.
, and
Naire
,
S.
,
2012
, “
Modeling and Design of Optimal Flow Perfusion Bioreactors for Tissue Engineering Applications
,”
Biotechnol. Bioeng.
,
109
(
4
), pp.
1095
1099
.10.1002/bit.24368
15.
Ball
,
O.
,
Nguyen
,
B.-N. B.
,
Placone
,
J. K.
, and
Fisher
,
J. P.
,
2016
, “
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3435
3445
.10.1007/s10439-016-1662-y
16.
Saatchi
,
A. R.
,
Seddiqi
,
H.
,
Amoabediny
,
G.
,
Helder
,
M. N.
,
Zandieh-Doulabi
,
B.
, and
Klein-Nulend
,
J.
,
2020
, “
Computational Fluid Dynamics in 3D-Printed Scaffolds With Different Strand-Orientation in Perfusion Bioreactors
,” Iranian J. Chem. Chem. Eng. (
IJCCE
),
39
(
5
), pp.
307
320
.
17.
Seddiqi
,
H.
,
Saatchi
,
A.
,
Amoabediny
,
G.
,
Helder
,
M. N.
,
Abbasi Ravasjani
,
S.
,
Safari Hajat Aghaei
,
M.
, et al.,
2020
, “
Inlet Flow Rate of Perfusion Bioreactors Affects Fluid Flow Dynamics, but Not Oxygen Concentration in 3D-Printed Scaffolds for Bone Tissue Engineering: Computational Analysis and Experimental Validation
,”
Comput. Biol. Med.
,
124
, p.
103826
.10.1016/j.compbiomed.2020.103826
18.
Bružauskaitė
,
I.
,
Bironaitė
,
D.
,
Bagdonas
,
E.
, and
Bernotienė
,
E.
,
2016
, “
Scaffolds and Cells for Tissue Regeneration: Different Scaffold Pore Sizes—Different Cell Effects
,”
Cytotechnology
,
68
(
3
), pp.
355
369
.10.1007/s10616-015-9895-4
19.
Zhao
,
F.
,
Lacroix
,
D.
,
Ito
,
K.
,
van Rietbergen
,
B.
, and
Hofmann
,
S.
,
2020
, “
Changes in Scaffold Porosity During Bone Tissue Engineering in Perfusion Bioreactors Considerably Affect Cellular Mechanical Stimulation for Mineralization
,”
Bone Rep.
,
12
, p.
100265
.10.1016/j.bonr.2020.100265
20.
Abbatiello
,
A.
, and
Habib
,
M. A.
,
2022
, “
Development of an in-House Customized Perfusion-Based Bioreactor for 3D Cell Culture
,”
ASME
Paper No. V001T01A016.10.1115/V001T01A016
21.
Leferink
,
A. M.
,
Chng
,
Y.-C.
,
Van Blitterswijk
,
C. A.
, and
Moroni
,
L.
,
2015
, “
Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor After Seeding on Polymeric 3D Additive Manufactured Scaffolds
,”
Front. Bioeng. Biotechnol.
,
3
, p.
169
.10.3389/fbioe.2015.00169
22.
Grogan
,
S.
,
Rieser
,
F.
,
Winkelmann
,
V.
,
Berardi
,
S.
, and
Mainil-Varlet
,
P.
,
2003
, “
A Static, Closed and Scaffold-Free Bioreactor System That Permits Chondrogenesis In Vitro
,”
Osteoarthritis Cartilage
,
11
(
6
), pp.
403
411
.10.1016/S1063-4584(03)00053-0
23.
Zhou
,
W.
,
Chen
,
Y.
,
Roh
,
T.
,
Lin
,
Y.
,
Ling
,
S.
,
Zhao
,
S.
,
Lin
,
J. D.
, et al.,
2018
, “
Multifunctional Bioreactor System for Human Intestine Tissues
,”
ACS Biomater. Sci. Eng.
,
4
(
1
), pp.
231
239
.10.1021/acsbiomaterials.7b00794
24.
Mitra
,
D.
,
Whitehead
,
J.
,
Yasui
,
O. W.
, and
Leach
,
J. K.
,
2017
, “
Bioreactor Culture Duration of Engineered Constructs Influences Bone Formation by Mesenchymal Stem Cells
,”
Biomaterials
,
146
, pp.
29
39
.10.1016/j.biomaterials.2017.08.044
25.
Sampson
,
K.
,
Koo
,
S.
,
Gadola
,
C.
,
Vasiukhina
,
A.
,
Singh
,
A.
,
Spartano
,
A.
,
Gollapudi
,
R.
, et al.,
2021
, “
Cultivation of Hierarchical 3D Scaffolds Inside a Perfusion Bioreactor: Scaffold Design and Finite-Element Analysis of Fluid Flow
,”
SN Appl. Sci.
,
3
(
12
), pp.
1
17
.10.1007/s42452-021-04871-3
26.
Visone
,
R.
,
Talò
,
G.
,
Lopa
,
S.
,
Rasponi
,
M.
, and
Moretti
,
M.
,
2018
, “
Enhancing All-in-One Bioreactors by Combining Interstitial Perfusion, Electrical Stimulation, on-Line Monitoring and Testing Within a Single Chamber for Cardiac Constructs
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.10.1038/s41598-018-35019-w
27.
Panek
,
M.
,
Antunović
,
M.
,
Pribolšan
,
L.
,
Ivković
,
A.
,
Gotić
,
M.
,
Vukasović
,
A.
,
Caput Mihalić
,
K.
, et al..,
2019
, “
Bone Tissue Engineering in a Perfusion Bioreactor Using Dexamethasone-Loaded Peptide Hydrogel
,”
Materials
,
12
(
6
), p.
919
.10.3390/ma12060919
28.
Neiman
,
J. A. S.
,
Raman
,
R.
,
Chan
,
V.
,
Rhoads
,
M. G.
,
Raredon
,
M. S. B.
,
Velazquez
,
J. J.
,
Dyer
,
R. L.
, et al.,
2015
, “
Photopatterning of Hydrogel Scaffolds Coupled to Filter Materials Using Stereolithography for Perfused 3D Culture of Hepatocytes
,”
Biotechnol. Bioeng.
,
112
(
4
), pp.
777
787
.10.1002/bit.25494
29.
Murphy
,
C. M.
,
Haugh
,
M. G.
, and
O'Brien
,
F. J.
,
2010
, “
The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen– Glycosaminoglycan Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
31
(
3
), pp.
461
466
.10.1016/j.biomaterials.2009.09.063
30.
Perez
,
R. A.
, and
Mestres
,
G.
,
2016
, “
Role of Pore Size and Morphology in Musculo-Skeletal Tissue Regeneration
,”
Mater. Sci. Eng.: C
,
61
, pp.
922
939
.10.1016/j.msec.2015.12.087
31.
Gaetani
,
R.
,
Doevendans
,
P. A.
,
Metz
,
C. H.
,
Alblas
,
J.
,
Messina
,
E.
,
Giacomello
,
A.
, and
Sluijter
,
J. P.
,
2012
, “
Cardiac Tissue Engineering Using Tissue Printing Technology and Human Cardiac Progenitor Cells
,”
Biomaterials
,
33
(
6
), pp.
1782
1790
.10.1016/j.biomaterials.2011.11.003
32.
Vorwald
,
C. E.
,
Gonzalez-Fernandez
,
T.
,
Joshee
,
S.
,
Sikorski
,
P.
, and
Leach
,
J. K.
,
2020
, “
Tunable Fibrin-Alginate Interpenetrating Network Hydrogels to Support Cell Spreading and Network Formation
,”
Acta Biomaterialia
,
108
, pp.
142
152
.10.1016/j.actbio.2020.03.014
33.
Grabska-Zielińska
,
S.
,
Sionkowska
,
A.
,
Reczyńska
,
K.
, and
Pamuła
,
E.
,
2020
, “
Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch
,”
Polymers
,
12
(
2
), p.
372
.10.3390/polym12020372
34.
Sultan
,
S.
, and
Mathew
,
A. P.
,
2018
, “
3D Printed Scaffolds With Gradient Porosity Based on a Cellulose Nanocrystal Hydrogel
,”
Nanoscale
,
10
(
9
), pp.
4421
4431
.10.1039/C7NR08966J
35.
Martin
,
I.
,
Wendt
,
D.
, and
Heberer
,
M.
,
2004
, “
The Role of Bioreactors in Tissue Engineering
,”
Trends Biotechnol.
,
22
(
2
), pp.
80
86
.10.1016/j.tibtech.2003.12.001
36.
Murphy
,
C. M.
, and
O'Brien
,
F. J.
,
2010
, “
Understanding the Effect of Mean Pore Size on Cell Activity in Collagen-Glycosaminoglycan Scaffolds
,”
Cell Adhes. Migr.
,
4
(
3
), pp.
377
381
.10.4161/cam.4.3.11747
37.
Zhao
,
F.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Hofmann
,
S.
,
2018
, “
Flow Rates in Perfusion Bioreactors to Maximise Mineralisation in Bone Tissue Engineering In Vitro
,”
J. Biomech.
,
79
, pp.
232
237
.10.1016/j.jbiomech.2018.08.004
38.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
.10.3390/ma11030454
39.
Ouyang
,
L.
,
Yao
,
R.
,
Zhao
,
Y.
, and
Sun
,
W.
,
2016
, “
Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells
,”
Biofabrication
,
8
(
3
), p.
035020
.10.1088/1758-5090/8/3/035020
40.
Kumar
,
R. S.
,
Cutkosky
,
V. M.
, and
Dutta
,
D.
,
1998
, “
Representation and Processing Heterogeneous Objects for Solid Freeform Fabrication
,”
Sixth IFIP WG 5.2 International Workshop on Geometric Modelling: Fundamentals and Applications
,
The University of Tokyo
,
Tokyo, Japan
, Dec. 7–9, pp.
7
9
.https://www.researchgate.net/publication/249945869_Representation_and_Processing_of_Heterogeneous_Objects_for_Solid_Freeform_Fabrication
41.
Nelson
,
C.
,
Tuladhar
,
S.
,
Launen
,
L.
, and
Habib
,
M.
,
2021
, “
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels
,”
Int. J. Mol. Sci.
,
22
(
24
), p.
13481
.10.3390/ijms222413481
You do not currently have access to this content.