Abstract

A novel, high-performance, cosmetic, rugged, appropriately costed, and mass-manufacturable prosthetic foot for use in low-income countries was designed and field tested. This ruggedized foot was created to accommodate the unique economic, environmental, and cultural requirements for users in India. A previous prototype that enabled able-bodied like gait was modified to include a durable cosmetic cover without altering the tuned stiffness of the overall foot. After undergoing mechanical benchtop testing, the foot was distributed to prosthesis users in India to for at least 5 months. Afterward, participants underwent clinical tests to evaluate walking performance, and additional benchtop testing was performed on the field-tested feet to identify changes in performance. The ruggedized foot endured 1 × 106 fatigue cycles without failure and demonstrated the desired stiffness properties. Subjects walked significantly faster (0.14 m/s) with the ruggedized foot compared to the Jaipur foot, and the feet showed no visible sign of damage after months of use. Additionally, the field-tested feet showed little difference in stiffness from a set of unused controls. Anecdotal feedback from the participants indicated that the foot improved their speed and/or walking effort, but may benefit from more degrees-of-freedom about the ankle. The results suggest that the foot fulfills its design requirements; however, further field testing is required with more participants over a longer period to make sure the foot is suitable for use in developing countries.

References

1.
National Survey Sample Organisation, Government of India
,
2003
, “
Disabled Persons in India
,” Ministry of Statistics and Program Implementation, Government of India, New Delhi, India, Report No. 485.
2.
Mohan
,
D.
,
1986
, “
A Report on Amputees in India
,”
Orthotics Prosthetics
,
40
(
1
), pp.
16
32
.http://www.oandplibrary.org/op/1986_01_016.asp
3.
Ministry of Statistics and Program Implementation, Government of India
,
2016
,
Disabled Persons in India: A Statistical Profile 2016
, Ministry of Statistics and Program Implementation, Government of India, New Delhi, India.
4.
Huber
,
I.
,
Fischenich
,
K. M.
,
Wolynski
,
J.
,
Niese
,
B.
,
Teater
,
R.
,
Mali
,
H. S.
,
Jain
,
A. K.
,
Sorby
,
S.
,
Abrams
,
L.
, and
Haut Donahue
,
T. L.
,
2018
, “
Epidemiological Study of Failures of the Jaipur Foot
,”
Disability Rehabil.: Assistive Technol.
,
13
(
8
), pp.
740
744
.10.1080/17483107.2017.1369593
5.
Geertzen
,
J. H. B.
,
Martina
,
J. D.
, and
Rietman
,
H. S.
,
2001
, “
Lower Limb Amputation Part 2: Rehabilitation—A 10 Year Literature Review
,”
Prosthetics Orthotics Int.
,
25
(
1
), pp.
14
20
.10.1080/03093640108726563
6.
Mengelkoch
,
L. J.
,
Kahle
,
J. T.
, and
Highsmith
,
M. J.
,
2014
, “
Energy Costs and Performance of Transtibial Amputees and Non-Amputees During Walking and Running
,”
Int. J. Sports Med.
,
35
(
14
), pp.
1223
1228
.10.1055/s-0034-1382056
8.
Hamner
,
S. R.
,
Narayan
,
V. G.
, and
Donaldson
,
K. M.
,
2013
, “
Designing for Scale: Development of the ReMotion Knee for Global Emerging Markets
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1851
1859
.10.1007/s10439-013-0792-8
9.
Jensen
,
J. S.
,
Nilsen
,
R.
,
Thanh
,
N. H.
,
Saldana
,
A.
, and
Hartz
,
C.
,
2006
, “
Clinical Field Testing of Polyurethane Feet for Trans-Tibial Amputees in Tropical Low-Income Countries
,”
Prosthetics Orthotics Int.
,
30
(
2
), pp.
182
194
.10.1080/03093640600794684
10.
Sethi
,
P. K.
,
Udawat
,
M. P.
,
Kasliwal
,
S. C.
, and
Chandra
,
R.
,
1978
, “
Vulcanized Rubber Foot for Lower Limb Amputees
,”
Prosthetics Orthotics Int.
,
2
(
3
), pp.
125
136
.10.3109/03093647809166697
11.
Sam
,
M.
,
Hansen
,
A. H.
, and
Childress
,
D. S.
,
2004
, “
Characterization of Prosthetic Feet Used in Low Income Countries
,”
Prosthetics Orthotics Int.
,
28
(
2
), pp.
132
140
.10.1080/03093640408726698
12.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2018
, “
A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
8
), pp.
1544
1555
.10.1109/TNSRE.2018.2848845.
13.
Olesnavage
,
K. M.
,
Prost
,
V.
,
Johnson
,
W. B.
, and
Winter
,
A. G.
,
2018
, “
Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error
,”
ASME J. Mech. Des.
,
140
(
10
), p.
102302
.10.1115/1.4040779
14.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2011
, “
Amputee Independent Prosthesis Properties—A New Model for Description and Measurement
,”
J. Biomech.
,
44
(
14
), pp.
2572
2575
.10.1016/j.jbiomech.2011.07.016
15.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control Human Movement
,
Wiley
,
Hoboken, NJ
.
16.
Olesnavage
,
K. M.
,
Prost
,
V.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
A.
,
2021
, “
Experimental Demonstration of the Lower Leg Trajectory Error Framework Using Physiological Data as Input
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031003
.10.1115/1.4048643
17.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
A.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Rotational Springs for Evaluating Lower Leg Trajectory Error, an Optimization Framework for Prosthetic Feet
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021010
.10.1115/1.4039342
18.
International Standards Organization
,
2016
, “
Prosthetics—Structural Testing of Lower-Limb Prostheses—Requirements and Test Methods
,” Standard No. ISO 10328:2016.
19.
Chakrabarti
,
D.
,
1997
,
Indian Anthropometric Dimensions for Ergonomic Design Practice
,
National Institute of Design
,
Ahmedabad, India
.
20.
Deathe
,
A. B.
, and
Miller
,
W. C.
,
2005
, “
The L Test of Functional Mobility: Measurement Properties of a Modified Version of the Timed ‘Up & Go’ Test Designed for People With Lower-Limb Amputations
,”
Phys. Ther.
,
85
(
7
), pp.
626
635
.10.1093/ptj/85.7.626
21.
American Orthotic and Prosthetic Association
,
2010
,
AOPA's Prosthetic Foot Project
,
AOPA
,
Alexandria, VA
.
22.
Shepherd
,
M. K.
,
Azocar
,
A. F.
,
Major
,
M. J.
, and
Rouse
,
E. J.
,
2018
, “
Amputee Perception of Prosthetic Ankle Stiffness During Locomotion
,”
J. NeuroEng. Rehabil.
,
15
(
1
), p.
99
.10.1186/s12984-018-0432-5
23.
Jensen
,
J. S.
, and
Sexton
,
S.
,
2010
, “
Appropriate Prosthetic and Orthotic Technologies in Low Income Countries (2000–2010)
,” International Society for Prosthetics and Orthotics, Brussels, Belgium, Report.https://pdf.usaid.gov/pdf_docs/Pnady352.pdf
24.
1996
, “
Consensus Conference on Appropriate Prosthetic Technology in Developing Countries: Conclusions and Recommendations
,”
Prosthetics Orthotics Int.
,
20
(
1
), pp.
61
64
.
25.
Jensen
,
J. S.
,
Nilsen
,
R.
,
Zeffer
,
J.
,
Fisk
,
J.
, and
Hartz
,
C.
,
2006
, “
Clinical Field Testing of Vulcanized Rubber Feet for Trans-Tibial Amputees in Tropical Low-Income Countries
,”
Prosthetics Orthotics Int.
,
30
(
2
), pp.
195
212
.10.1080/03093640600794692
You do not currently have access to this content.