Abstract

This chapter presents the design and preliminary evaluation of a user-adaptive ankle foot orthosis (AFO). To begin with, according to structural characteristics of the human ankle as well as foot dimensions of an able-bodied subject, the ankle orthotic device is conceived. Then, based on a common two-degree-of-freedom (DOF) foot model, a coupled AFO–human system is setup. Further, the system's DOFs are derived; the device's mechanism of user adaptation is analyzed and verified using adams software. After that, the layout of a portable orthotic system, as well as a smart insole that detects gait phases, is illustrated. Finally, the orthotic system is tested on the aforementioned subject. Results show that, during the AFO-based walking with assistive torque, the foot's plantarflexion level before the swing stage and dorsiflexion level in the swing stage approximately increase by 3 deg and 4 deg, respectively, relative to the condition of AFO-based walking without assistive torque. Therefore, the orthosis has the potential to aid body propulsion and control toe clearance.

References

1.
Hussain
,
S.
,
Xie
,
S. Q.
,
Jamwal
,
P. K.
, and
Parsons
,
J.
,
2012
, “
An Intrinsically Compliant Robotic Orthosis for Treadmill Training
,”
Med. Eng. Phys.
,
34
(
10
), pp.
1448
1453
.10.1016/j.medengphy.2012.02.003
2.
Wang
,
H.
,
Feng
,
Y.
,
Yu
,
H.
,
Wang
,
Z.
,
Vladareanuv
,
V.
, and
Du
,
Y.
,
2018
, “
Mechanical Design and Trajectory Planning of a Lower Limb Rehabilitation Robot With a Variable Workspace
,”
Int. J. Adv. Rob. Syst.
,
15
(
3
), pp.
1
13
.10.1177/1729881418776855
3.
Sierra
,
S.
,
Arciniegas
,
L.
,
Ballen-Moreno
,
F.
,
Gomez-Vargas
,
D.
,
Munera
,
M.
, and
Cifuentes
,
C. A.
,
2020
, “
Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications
,”
Exoskeleton Robots Rehabilitation Healthcare Devices
, Springer Singapore, Singapore, pp.
67
93
.10.1007/978-981-15-4732-4
4.
Aguirre-Ollinger
,
G.
, and
Yu
,
H.
,
2021
, “
Omnidirectional Platforms for Gait Training: Admittance-Shaping Control for Enhanced Mobility
,”
J. Intell. Rob. Syst.
,
101
(
3
), pp.
1
17
.10.1007/s10846-021-01335-z
5.
Shorter
,
K. A.
,
Kogler
,
G. F.
,
Loth
,
E.
,
Durfee
,
W. K.
, and
Hsiao-Wecksler
,
E. T.
,
2011
, “
A Portable Powered Ankle-Foot Orthosis for Rehabilitation
,”
J. Rehabil. Res. Develop.
,
48
(
4
), pp.
459
472
.10.1682/JRRD.2010.04.0054
6.
Ma
,
H.
,
Zhong
,
C.
,
Chen
,
B.
,
Chan
,
K.-M.
, and
Liao
,
W.-H.
,
2018
, “
User-Adaptive Assistance of Assistive Knee Braces for Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
10
), pp.
1994
2005
.10.1109/TNSRE.2018.2868693
7.
Di Natali
,
C.
,
Poliero
,
T.
,
Sposito
,
M.
,
Graf
,
E.
,
Bauer
,
C.
,
Pauli
,
C.
,
Bottenberg
,
E.
,
De Eyto
,
A.
,
O'Sullivan
,
L.
,
Hidalgo
,
A. F.
,
Scherly
,
D.
,
Stadler
,
K. S.
,
Caldwell
,
D. G.
, and
Ortiz
,
J.
,
2019
, “
Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
,”
Robotica
,
37
(
12
), pp.
2014
2034
.10.1017/S0263574719000067
8.
Zhang
,
Y.
,
Kleinmann
,
R. J.
,
Nolan
,
K. J.
, and
Zanotto
,
D.
,
2019
, “
Preliminary Validation of a Cable-Driven Powered Ankle–Foot Orthosis With Dual Actuation Mode
,”
IEEE Trans. Medical Rob. Bionics
,
1
(
1
), pp.
30
37
.10.1109/TMRB.2019.2895787
9.
Shorter
,
K. A.
,
Xia
,
J.
,
Hsiao-Wecksler
,
E. T.
,
Durfee
,
W. K.
, and
Kogler
,
G. F.
,
2013
, “
Technologies for Powered Ankle-Foot Orthotic Systems: Possibilities and Challenges
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
337
347
.10.1109/TMECH.2011.2174799
10.
Gmerek
,
A.
,
Meskin
,
N.
,
Tehrani
,
E. S.
, and
Kearney
,
R.
,
2016
, “
Design of a Hydraulic Ankle-Foot Orthosis
,” Sixth IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), Singapore, June 26–29, pp.
1041
1048
.10.1109/BIOROB.2016.7523768
11.
Langlois
,
K.
,
Moltedo
,
M.
,
Bacek
,
T.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Design and Development of Customized Physical Interfaces to Reduce Relative Motion Between the User and a Powered Ankle Foot Exoskeleton
,”
Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
, Enschede, Netherlands, Aug. 26–29, pp.
1083
1088
.10.1109/BIOROB.2018.8487706
12.
Baker
,
E.
,
Voglewede
,
P.
,
Current
,
T.
, and
Silver-Thorn
,
B.
,
2020
, “
An Orthotic Joint Design for Enhancing Ankle Mobility With Ankle Foot Orthoses Use
,”
ASME J. Med. Dev.
,
14
(
4
), p.
044501
.10.1115/1.4048615
13.
van der Wilk
,
D.
,
Dijkstra
,
P. U.
,
Postema
,
K.
,
Verkerke
,
G. J.
, and
Hijmans
,
J. M.
,
2015
, “
Effects of Ankle Foot Orthoses on Body Functions and Activities in People With Floppy Paretic Ankle Muscles: A Systematic Review
,”
Clin. Biomech.
,
30
(
10
), pp.
1009
1025
.10.1016/j.clinbiomech.2015.09.013
14.
Shi
,
B.
,
Chen
,
X.
,
Yue
,
Z.
,
Yin
,
S.
,
Weng
,
Q.
,
Zhang
,
X.
,
Wang
,
J.
, and
Wen
,
W.
,
2019
, “
Wearable Ankle Robots in Post-Stroke Rehabilitation of Gait: A Systematic Review
,”
Front. Neurorobotics
,
13
, p.
63
.10.3389/fnbot.2019.00063
15.
Moltedo
,
M.
,
Baček
,
T.
,
Verstraten
,
T.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Powered Ankle-Foot Orthoses: The Effects of the Assistance on Healthy and Impaired Users While Walking
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
86
.10.1186/s12984-018-0424-5
16.
Levangie
,
P. K.
, and
Norkin
,
C. C.
,
2011
,
Joint Structure and Function: A Comprehensive Analysis
,
FA Davis
,
Philadelphia, PA
.
17.
Perry
,
J.
, and
Burnfield
,
J.
,
2010
,
Gait Analysis: Normal and Pathological Function
, 2nd ed.,
Slack Incorporated
,
Thorofare, NJ
.
18.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (Bleex)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.10.1109/TMECH.2006.871087
19.
Agrawal
,
A.
,
Sangwan
,
V.
,
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Binder-Macleod
,
S. A.
,
2007
, “
Design of a Novel Two Degree-of-Freedom Ankle-Foot Orthosis
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1137
1143
.10.1115/1.2771231
20.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2058
2069
.10.1109/TMECH.2017.2718999
21.
Awad
,
L. N.
,
Esquenazi
,
A.
,
Francisco
,
G. E.
,
Nolan
,
K. J.
, and
Jayaraman
,
A.
,
2020
, “
The Rewalk Restore™ Soft Robotic Exosuit: A Multi-Site Clinical Trial of the Safety, Reliability, and Feasibility of Exosuit-Augmented Post-Stroke Gait Rehabilitation
,”
J. Neuroeng. Rehabil.
,
17
(
1
), p.
80
.10.1186/s12984-020-00702-5
22.
Yeung
,
L.-F.
,
Ockenfeld
,
C.
,
Pang
,
M.-K.
,
Wai
,
H.-W.
,
Soo
,
O.-Y.
,
Li
,
S.-W.
, and
Tong
,
K.-Y.
,
2017
, “
Design of an Exoskeleton Ankle Robot for Robot-Assisted Gait Training of Stroke Patients
,” International Conference on Rehabilitation Robotics (
ICORR
), London, UK, July 17–20, pp.
211
215
.10.1109/ICORR.2017.8009248
23.
Dul
,
J.
, and
Johnson
,
G.
,
1985
, “
A Kinematic Model of the Human Ankle
,”
ASME J. Biomed. Eng.
,
7
(
2
), pp.
137
143
.10.1016/0141-5425(85)90043-3
24.
Zhou
,
Y.
, and
Liu
,
L.
,
2020
, “
Development and Testing of a User-Adaptive Ankle Foot Orthosis
,” Fifth International Conference on Advanced Robotics and Mechatronics (
ICARM
), Shenzhen, China, Dec. 18–21, pp.
582
587
.10.1109/ICARM49381.2020.9195386
25.
Xie
,
C. X.
,
Zheng
,
S. X.
, and
Lin
,
Y. Q.
,
1996
,
Design of Spacial Mechanism
,
Shanghai Scientific and Technical Publishers
, Shanghai, China.
26.
Palastanga
,
N.
,
Field
,
D.
, and
Soames
,
R.
,
2006
,
Anatomy and Human Movement: Structure and Function
, Butterworth-Heinemann/Elsevier
, Edinburgh, UK.
27.
Nordin
,
M.
, and
Frankel
,
V. H.
,
2001
,
Basic Biomechanics of the Musculoskeletal System
,
Lippincott Williams & Wilkins
, Baltimore, MD.
28.
Senanayake
,
C.
, and
Senanayake
,
S. A.
,
2011
, “
A Computational Method for Reliable Gait Event Detection and Abnormality Detection for Feedback in Rehabilitation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
10
), pp.
863
874
.10.1080/10255842.2010.499866
29.
González
,
I.
,
Fontecha
,
J.
,
Hervás
,
R.
, and
Bravo
,
J.
,
2015
, “
An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles
,”
Sensors
,
15
(
7
), pp.
16589
16613
.10.3390/s150716589
30.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.