Abstract

A three-dimensional (3D) printing technology that facilitates continuous printing along a combination of Cartesian and curvilinear coordinates, designed for in vivo and in situ bioprinting, is introduced. The combined Cartesian/curvilinear printing head motion is accomplished by attaching a biomimetic, flexible, “tendon cable” soft robot arm to a conventional Cartesian three axis 3D printing carousel. This allows printing along a combination of Cartesian and curvilinear coordinates using five independent stepper motors controlled by an Arduino Uno with each motor requiring a microstep driver powered via a 12 V power supply. Three of the independent motors control the printing head motion along conventional Cartesian coordinates while two of the independent motors control the length of each pair of the four “tendon cables” which in turn controls the radius of curvature and the angle displacement of the soft printer head along two orthogonal planes. This combination imparts motion along six independent degrees-of-freedom in Cartesian and curvilinear coordinates. The design of the system is described together with experimental results, which demonstrate that this design can print continuously along curved and inclined surfaces while avoiding the “staircase” effect, which is typical of conventional three axis 3D printing along curvilinear surfaces.

References

1.
Keriquel
,
V.
,
Guillemot
,
F.
,
Arnault
,
I.
,
Guillotin
,
B.
,
Miraux
,
S.
,
Amédée
,
J.
,
Fricain
,
J.-C.
, and
Catros
,
S.
,
2010
, “
In Vivo Bioprinting for Computer- and Robotic-Assisted Medical Intervention: Preliminary Study in Mice
,”
Biofabrication
,
2
(
1
), p.
014101
.10.1088/1758-5082/2/1/014101
2.
Zhao
,
W.
, and
Xu
,
T.
,
2020
, “
Preliminary Engineering for In Situ In Vivo Bioprinting: A Novel Micro Bioprinting Platform for In Situ In Vivo Bioprinting at a Gastric Woulnd
,”
Biofabrication
,
12
(
4
), p.
045020
.10.1088/1758-5090/aba4ff
3.
Urciuolo
,
A.
,
Poli
,
I.
,
Brandolino
,
L.
,
Raffa
,
P.
,
Scattolini
,
V.
,
Laterza
,
C.
,
Giobbe
,
G. G.
,
Zambaiti
,
E.
,
Selmin
,
G.
,
Magnussen
,
M.
,
Brigo
,
L.
,
De Coppi
,
P.
,
Salmaso
,
S.
,
Giomo
,
M.
, and
Elvassore
,
N.
,
2020
, “
Intravital Three-Dimensional Bioprinting
,”
Nat. Biomed. Eng.
,
4
(
9
), pp.
901
915
.10.1038/s41551-020-0568-z
4.
Albanna
,
M.
,
Binder
,
K. W.
,
Murphy
,
S. V.
,
Kim
,
J.
,
Qasem
,
S. A.
,
Zhao
,
W.
,
Tan
,
J.
,
El-Amin
,
I. B.
,
Dice
,
D. D.
,
Marco
,
J.
,
Green
,
J.
,
Xu
,
T.
,
Skardal
,
A.
,
Holmes
,
J. H.
,
Jackson
,
J. D.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2019
, “
In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds
,”
Sci. Rep.
,
9
(
1
), p.
1856
.10.1038/s41598-018-38366-w
5.
Ghai
,
S.
,
Sharma
,
Y.
,
Pillai
,
A. K.
,
Ghai
,
S.
,
Sharma
,
Y.
,
Jain
,
N.
,
Satpathy
,
M.
, and
Pillai
,
A. K.
,
2018
, “
Use of 3D Printing Technology in Cranimaxillofacial Surgery: A Review
,”
Oral Maxillofac. Surg.
,
22
(
3
), pp.
249
259
.10.1007/s10006-018-0704-z
6.
Pietrabissa
,
A.
,
Marconi
,
S.
,
Negrello
,
E.
,
Mauri
,
V.
,
Peri
,
A.
,
Pugliese
,
L.
,
Marone
,
E. M.
, and
Auricchio
,
F.
,
2020
, “
An Overview on 3D Printing for Abdominal Surgery
,”
Surg. Endosc.
,
34
(
1
), pp.
1
13
.10.1007/s00464-019-07155-5
7.
Tyberg
,
J.
, and
Bohn
,
J.
,
1998
, “
Local Adaptive Slicing
,”
Rapid Prototyping J.
,
4
(
3
), pp.
118
127
.10.1108/13552549810222993
8.
Chakraborty
,
D.
,
Reddy
,
B. A.
, and
Choudhury
,
A. R.
,
2008
, “
Extruder Path Generation for Curved Fused Deposition Modeling
,”
Comput.-Aided Des.
,
40
(
2
), pp.
235
243
.10.1016/j.cad.2007.10.014
9.
Rao
,
C. H.
,
Avinash
,
K.
,
Goel
,
S.
,
Rao
,
C. H.
,
Avinash
,
K.
,
Varaprasad
,
B. K. S. V. L.
, and
Goel
,
S.
,
2022
, “
A Review on Printed Electronics With Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Oportunities
,”
J. Electron. Mater.
,
51
(
6
), pp.
2747
2765
.10.1007/s11664-022-09579-7
10.
Arigela
,
S.
, and
Chintamredy
,
W.
,
2021
, “
Fused Deposition Modeling of an Aircraft Wing Using Industrial Robot With Non-Linear Tool Path Generation
,”
Int. J. Eng.
,
34
(
1
), pp.
272
282
.10.5829/ije.2021.34.01a.30
11.
Yao
,
Y.
,
Zhang
,
Y.
,
Aburaia
,
M.
, and
Lackner
,
M.
,
2021
, “
3D Printing of Objects With Continuous Spatial Paths by a Multi-Axis Robotic FFF
,”
Appl. Sci.
,
11
(
11
), p.
4825
.10.3390/app11114825
12.
Keating
,
S.
, and
Oxman
,
N.
,
2013
, “
Compound Fabrication: A Multifunctional Robotic Platform for Digital Design and Fabrication
,”
Rob. Comput.-Integr. Manuf.
,
29
(
6
), pp.
439
448
.10.1016/j.rcim.2013.05.001
13.
Zhang
,
H.
,
Lei
,
X.
,
Hu
,
Q.
,
Wu
,
S.
,
Aburaia
,
M.
,
Gonzalez-Gutierrez
,
J.
, and
Lammer
,
H.
,
2022
, “
Hybrid Printing Method of Polymer and Continuous Fiber-Reinforced Thermoplastic Composites (CFRTPCs) for Pipes Through Double-Nozzle Five-Axis Printer
,”
Polymers
,
14
(
4
), p.
819
.10.3390/polym14040819
14.
Dai
,
C.
,
Wang
,
C. C. L.
,
Wu
,
C.
,
Lefebvre
,
S.
,
Fang
,
G.
, and
Liu
,
Y.-J.
,
2018
, “
Support Free Printing by Multi-Axis Motion
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
14
.10.1145/3197517.3201342
15.
Fry
,
N.
,
Richardson
,
R.
, and
Boyle
,
J.
,
2020
, “
Robotic Additive Manufacturing System for Dynamic Build Orientations
,”
Rapid Prototyping J.
,
26
(
4
), pp.
659
667
.10.1108/RPJ-09-2019-0243
16.
van Kampen
,
K. A.
,
Olaret
,
E.
,
Stancu
,
I. C.
,
Moroni
,
L.
, and
Mota
,
C.
,
2021
, “
Controllable Four Axis Extrusion-Based Additive Manufacturing System for the Fabrication of Tubular Scaffolds With Tailorable Mechanical Properties
,”
Mater. Sci. Eng., C
,
119
, pp.
111472
111482
.10.1016/j.msec.2020.111472
17.
Zhong
,
Y.
,
Hu
,
L.
, and
Yinsheng
,
X.
,
2020
, “
Recent Advances in Design and Actuation of Continuum Robots for Medical Applications
,”
Actuators
,
9
(
4
), p.
142
.10.3390/act9040142
18.
Walker
,
I. D.
,
Dawson
,
D. M.
,
Flash
,
T.
,
Grasso
,
F. W.
,
Hanlon
,
R. T.
,
Hochner
,
B.
,
Kier
,
W. M.
,
Pagano
,
C. C.
,
Rahn
,
C. D.
, and
Zhang
,
Q. M.
,
2005
, “
Continuum Robot Arms Inspired by Cephalopods
,”
Proceedings of the Society of Photo Optical Instrumentation Engineering
, Unmanned Ground Vehicle Technology VII,
SPIE
, Bellingham, WA, pp.
303
314
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.2781&rep=rep1&type=pdf
19.
Renda
,
F.
,
Giorelli
,
M.
,
Laschi
,
C.
,
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Modeling of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
.10.1109/TRO.2014.2325992
20.
Murphy
,
S. V.
,
Skardal
,
A.
, and
Atala
,
A.
,
2013
, “
Evaluation of Hydrogels for Bio-Printing Applications
,”
J. Biomed. Mater. Res., Part A
,
101
(
1
), pp.
272
284
.10.1002/jbm.a.34326
21.
Skardal
,
A.
, and
Atala
,
A.
,
2015
, “
Biomaterials for Integration With 3-D Bioprinting
,”
Ann. Biomed. Eng.
,
43
(
3
), pp.
730
746
.10.1007/s10439-014-1207-1
22.
Zhou
,
C.
,
Yang
,
Y.
,
Wang
,
J.
,
Wu
,
Q.
,
Gu
,
Z.
,
Zhou
,
Y.
,
Liu
,
X.
,
Yang
,
Y.
,
Tang
,
H.
,
Ling
,
Q.
, and
Wang
,
L.
,
2021
, “
Ferromagnetic Soft Catheter Robots for Minimally Invasive Bioprinting
,”
Nat. Commun.
,
12
, pp.
1
12
.10.1038/s41467-021-25386-w
23.
Chen
,
Y.
,
Zhang
,
J.
,
Liu
,
X.
,
Wang
,
S.
,
Tao
,
J.
,
Huang
,
Y.
,
Wu
,
W.
,
Li
,
Y.
,
Zhou
,
K.
,
Wei
,
X.
,
Chen
,
S.
,
Li
,
X.
,
Xu
,
X.
,
Cardon
,
L.
,
Qian
,
Z.
, and
Gou
,
M.
,
2020
, “
Noninvasive In Vivo 3D Printing
,”
Sci. Adv.
,
6
(
23
), pp. 2117–2126.10.1126/sciadv.aba7406
You do not currently have access to this content.