Abstract

Active rehabilitation can use electro-encephalogram (EEG) signals to identify the patient's left and right leg movement intentions for rehabilitation training, which helps stroke patients recover better and faster. However, the lower limb rehabilitation robot based on EEG has low recognition accuracy so far. A classification method based on EEG signals of motor imagery is proposed to enable patients to accurately control their left and right legs. Firstly, aiming at the unstable characteristics of EEG signals, an experimental protocol of motor imagery was constructed based on multijoint trajectory planning motion of left and right legs. The signals with time-frequency analysis and event-related desynchrony/synchronization (ERD/S) analysis have proved the reliability and validity of the collected EEG signals. Then, the EEG signals generated by the protocol were preprocessed and common space pattern (CSP) was used to extract their features. Support vector machine (SVM) and linear discriminant analysis (LDA) are adapted and their accuracy of classification results are compared. Finally, on the basis of the proposed classifier with excellent performance, the classifier is used in the active control strategy of the lower limb rehabilitation robot, and the average accuracy of the left leg and right leg controlled by two healthy volunteers was 95.7%, 97.3%, 94.9%, and 94.6%, respectively, by using the ten-fold cross test. This research provides a good theoretical basis for the realization and application of brain-computer interfaces in rehabilitation training.

References

1.
Vollset
,
S. E.
,
Goren
,
E.
,
Yuan
,
C.-W.
,
Cao
,
J.
,
Smith
,
A. E.
,
Hsiao
,
T.
,
Bisignano
,
C.
, et al.,
2020
, “
Fertility, Mortality, Migration, and Population Scenarios for 195 Countries and Territories From 2017 to 2100:A Forecasting Analysis for the Global Burden of Disease Study
,”
Lancet
,
396
(
10258
), pp.
1285
1306
.10.1016/S0140-6736(20)30677-2
2.
Iandolo
,
R.
,
Marini
,
F.
,
Semprini
,
M.
,
Laffranchi
,
M.
,
Mugnosso
,
M.
,
Cherif
,
A.
,
De Michieli
,
L.
,
Chiappalone
,
M.
, and
Zenzeri
,
J.
,
2019
, “
Perspectives and Challenges in Robotic Neurorehabilitation
,”
Appl. Sci.
,
9
(
15
), p.
3183
.10.3390/app9153183
3.
Kora
,
K.
,
Stinear
,
J.
, and
Mcdaid
,
A.
,
2017
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), pp.
1
6
.10.1115/1.4035127
4.
Shi
,
D.
,
Zhang
,
W. X.
,
Zhang
,
W.
, and
Ding
,
X. L.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
2
12
.10.1186/s10033-019-0389-8
5.
Oña
,
E. D.
,
Garcia-Haro
,
J. M.
,
Jardón
,
A.
, and
Balaguer
,
C.
,
2019
, “
Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs
,”
Appl. Sci.
,
9
(
13
), p.
2586
.10.3390/app9132586
6.
Mancisidor
,
A.
,
Zubizarreta
,
A.
,
Cabanes
,
I.
,
Bengoa
,
P.
,
Brull
,
A.
, and
Jung
,
J. H.
,
2019
, “
Inclusive and Seamless Control Framework for Safe Robot-Mediated Therapy for Upper Limbs Rehabilitation
,”
Mechatronics
,
58
, pp.
70
79
.10.1016/j.mechatronics.2019.02.002
7.
Wu
,
Q.
, and
Chen
,
Y.
,
2021
, “
Development of an Intention-Based Adaptive Neural Cooperative Control Strategy for Upper-Limb Robotic Rehabilitation
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
335
342
.10.1109/LRA.2020.3043197
8.
Yao
,
S. W.
,
Zhuang
,
Y.
,
Li
,
Z. J.
, and
Song
,
R.
,
2018
, “
Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model
,”
Front. Neurorobotics
,
12
, pp.
1
12
.10.3389/fnbot.2018.00016
9.
Kim
,
G. S.
,
2016
, “
Development of a Wrist Bending Rehabilitation Robot With a Three-Axis Force Sensor
,”
J. Sensor Sci. Technol.
,
25
(
1
), pp.
27
34
.10.5369/JSST.2016.25.1.27
10.
Shi
,
M.
,
Yang
,
C.
, and
Zhang
,
D.
,
2021
, “
A Novel Human-Machine Collaboration Model of an Ankle Joint Rehabilitation Robot Driven by EEG Signals
,”
Math. Probl. Eng.
,
2021
, pp.
1
8
.10.1155/2021/5564235
11.
Bird
,
J. J.
,
Pritchard
,
M.
,
Fratini
,
A.
,
Ekart
,
A.
, and
Faria
,
D. R.
,
2021
, “
Synthetic Biological Signals Machine-Generated by GPT-2 Improve the Classification of EEG and EMG Through Data Augmentation
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
3498
3504
.10.1109/LRA.2021.3056355
12.
Dai
,
W.
,
Liu
,
Y.
,
Lu
,
H.
,
Zheng
,
Z.
, and
Zhou
,
Z.
,
2021
, “
A Shared Control Framework for Human-Multirobot Foraging With Brain-Computer Interface
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6305
6312
.10.1109/LRA.2021.3092290
13.
Kilicarslan
,
A.
,
Prasad
,
S.
, and
Grossman
,
R. G.
,
2013
, “
High Accuracy Decoding of User Intentions Using EEG to Control a Lower-Body Exoskeleton
,”
Conference of the IEEE Engineering in Medicine and Biology Society
, Osaka, Japan, July 3–7, pp. 5606–5609.10.1109/EMBC.2013.6610821
14.
Hiremath
,
S. V.
,
Chen
,
W.
,
Wang
,
W.
,
Foldes
,
S.
,
Yang
,
Y.
,
Tyler-Kabara
,
E. C.
,
Collinger
,
J. L.
, and
Boninger
,
M. L.
,
2015
, “
Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays
,”
Front. Integr. Neurosci.
,
9
, pp.
1
10
.10.3389/fnint.2015.00040
15.
Darvishi
,
S.
,
Abbott
,
D.
, and
Baumert
,
M.
,
2015
, “
Prediction of Motor Imagery Based Brain Computer Interface Performance Using a Reaction Time Test
,”
Engineering in Medicine and Biology Society
(
EMBC
), 2015 37th Annual International Conference of the IEEE, Milan, Italy, Aug. 25–29, pp.
2880
2883
.10.1109/EMBC.2015.7318993
16.
Soekadar
,
S. R.
,
Witkowski
,
M.
, and
Vitiello
,
N.
,
2015
, “
An EEG/EOG-Based Hybrid Brain-Neural Computer Interaction (BNCI) System to Control an Exoskeleton for the Paralyzed Hand
,”
Biomedizinische Technik
,
60
, pp.
199
205
.10.15496/publikation-6745
17.
Asanza
,
V.
,
Pelaez
,
E.
, and,
Loayza
,
F.
,
2017
, “
EEG Signal Clustering for Motor and Imaginary Motor Tasks on Hands and Feet
,”
2017 IEEE Second Ecuador Tech. Chapters Meeting
, Salinas, Ecuador, Oct. 16–20, pp.
1
5
.10.1109/ET CM.2017.8247451
18.
Kevric
,
J.
, and
Subasi
,
A.
,
2017
, “
Comparison of Signal Decomposition Methods in Classification of EEG Signals for Motor-Imagery BCI System
,”
Biomed. Signal Process. Control
,
31
, pp.
398
406
.10.1016/j.bspc.2016.09.007
19.
Gao
,
K.
,
Wang
,
Y.
, and
Gao
,
X.
,
2014
, “
Visual and Auditory Brain-Computer Interfaces
,”
IEEE Trans. Biomed. Eng.
,
61
, pp.
1436
1447
.10.1109/T BME.2014.2300164
20.
Yeom
,
S.-K.
,
Fazli
,
S.
,
Müller
,
K.-R.
, and
Lee
,
S.-W.
,
2014
, “
An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity
,”
Plos One
,
9
(
11
), p.
e111157
.10.1371/journal.pone.0111157
21.
Vinoj
,
P. G.
,
Jacob
,
S.
,
Menon
,
V. G.
,
Rajesh
,
S.
, and
Khosravi
,
M. R.
,
2019
, “
Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed
,”
IEEE Access
,
7
, pp.
132628
132648
.10.1109/ACCESS.2019.2921375
22.
Sergio
,
V. M.
,
Francisco
,
V. A.
, and
Salvador
,
S. R.
,
2015
, “
Wheelchair Navigation With an Audio-Cued, Two-Class Motor Imagery-Based Brain–Computer Interface System
,” 2015 7th International IEEE/EMBS Conference on Neural Engineering (
NER
), Montpellier, France, Apr. 22–24, pp.
174
177
.10.1109/NER.2015.7146588
23.
Chen
,
X.
,
Zhao
,
B.
,
Wang
,
Y.
,
Xu
,
S.
, and
Gao
,
X.
,
2018
, “
Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI
,”
Int. J. Neural Syst.
,
28
(
8
), p.
1850018
.10.1142/S0129065718500181
24.
Wang
,
Y. J.
,
Hong
,
B.
, and
Gao
,
X. R.
,
2007
, “
Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery
,”
Conference of the IEEE Engineering in Medicine and Biology Society
, Lyon, France, Aug. 22–26, pp.
5059
5062
, Vol.
2007
.10.1109/IEMBS.2007.4353477
25.
Gao
,
H.
,
Luo
,
L.
,
Pi
,
M.
,
Li
,
Z.
,
Li
,
Q.
,
Zhao
,
K.
, and
Huang
,
J.
,
2021
, “
EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
2
), pp.
530
540
.10.1109/TASE.2019.2956110
26.
Gordleeva
,
S.
,
Lukoyanov
,
M. V.
,
Mineev
,
S. A.
,
Khoruzhko
,
M. A.
,
Mironov
,
V. I.
,
Kaplan
,
A.
, and
Kazantsev
,
V. B.
,
2017
, “
Exoskeleton Control System Based on Motor-Imaginary Brain–Computer Interface
,”
Technol. Med.
,
9
(
3
), pp.
31
38
.10.17691/stm2017.9.3.04
27.
Kwak
,
N. S.
,
Muller
,
K. R.
, and
Lee
,
S. W.
,
2015
, “
A Lower Limb Exoskeleton Control System Based on Steady State Visual Evoked Potentials
,”
J. Neural Eng.
,
12
(
5
), p.
056009
.10.1088/1741-2560/12/5/056009
28.
Fiedler
,
P.
,
Pedrosa
,
P.
,
Griebel
,
S.
,
Fonseca
,
C.
,
Vaz
,
F.
,
Supriyanto
,
E.
,
Zanow
,
F.
, and
Haueisen
,
J.
,
2015
, “
Novel Multipin Electrode Cap System for Dry Electroencephalography
,”
Brain Topogr.
,
28
(
5
), pp.
647
656
.10.1007/s10548-015-0435-5
29.
Aggarwal
,
S.
, and
Chugh
,
N.
,
2022
, “
Review of Machine Learning Techniques for EEG Based Brain Computer Interface
,”
Arch. Comput. Methods Eng.
,
29
(
5
), pp.
3001
3020
.10.1007/s11831-021-09684-6
30.
Chaisaen
,
R.
,
Autthasan
,
P.
,
Mingchinda
,
N.
,
Leelaarporn
,
P.
,
Kunaseth
,
N.
,
Tammajarung
,
S.
,
Manoonpong
,
P.
,
Mukhopadhyay
,
S. C.
, and
Wilaiprasitporn
,
T.
,
2020
, “
Decoding EEG Rhythms During Action Observation,Motor Imagery,and Execution for Standing and Sitting
,”
IEEE Sens. J.
,
20
(
22
), pp.
13776
13786
.10.1109/JSEN.2020.3005968
31.
Ramoser
,
H.
,
Muller-Gerking
,
J.
, and
Pfurtscheller
,
G.
,
2000
, “
Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement
,”
IEEE Trans. Rehabilitation Eng.
,
8
(
4
), pp.
441
446
.10.1109/86.895946
32.
Richhariya
,
B.
, and
Tanveer
,
M.
,
2018
, “
EEG Signal Classification Using Universum Support Vector Machine
,”
Expert Syst. Appl.
,
106
, pp.
169
182
.10.1016/j.eswa.2018.03.053
33.
Sharmila
,
A.
, and
Mahalakshmi
,
P.
,
2017
, “
Wavelet-Based Feature Extraction for Classification of Epileptic Seizure EEG Signal
,”
J. Med. Eng. Technol.
,
41
(
8
), pp.
670
680
.10.1080/03091902.2017.1394388
You do not currently have access to this content.