Abstract

A diagnostic ultrasound machine add-on module (AOM) was created to enable an off-the-shelf abdominal imaging transducer to perform contrast-enhanced therapeutic ultrasound. The AOM creates plane-wave ultrasound through an abdominal imaging transducer targeting intravascular microbubbles within tumors. This therapeutic antivascular ultrasound (AVUS) causes heating and cavitation effects that destroy tumor vasculature and starves it of nutrients. The AOM can switch between therapeutic and imaging modes for monitoring AVUS treatment. The therapeutic capability of the AOM was validated in murine hepatocellular carcinomas (HCC) grown in adult mice. Contrast-enhanced ultrasound imaging performed before and after the therapeutic treatment evaluated the AVUS response to the treatment. The peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) were measured for the control and AOM treatment groups. The AOM group showed a substantial decrease in these parameters compared to the control group. The difference between the pre- and post-therapy was significant, (p < 0.001) for the AOM group and not significant (p > 0.5) for the control group. Tumor temperatures increased markedly for the AOM group with a thermal dose (CEM43) of 124.8 (±2.5). Histochemical analysis of the excised HCC samples revealed several hemorrhagic pools in tumors from the AOM group, absent in the tumors of the control group. These results demonstrate the theranostic potential of the AOM to induce and monitor vascular disruption within murine tumors.

References

1.
Sung
,
H.
,
Ferlay
,
J.
,
Siegel
,
R. L.
,
Laversanne
,
M.
,
Soerjomataram
,
I.
,
Jemal
,
A.
, and
Bray
,
F.
,
2021
, “
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
,”
CA J. Clin.
,
71
(
3
), pp.
209
249
.10.3322/caac.21660
2.
Kanwal
,
F.
, and
Singal
,
A. G.
,
2019
, “
Surveillance for Hepatocellular Carcinoma: Current Best Practice and Future Direction
,”
Gastroenterology
,
157
(
1
), pp.
54
64
.10.1053/j.gastro.2019.02.049
3.
Howlader
,
N.
,
Noone
,
A. M.
,
Krapcho
,
M.
,
Miller
,
D.
,
Brest
,
A.
,
Yu
,
M.
,
Ruhl
,
J.
,
Tatalovich
,
Z.
,
Mariotto
,
A.
,
Lewis
,
D. R.
,
Chen
,
H. S.
,
Feuer
,
E. J.
, and
Cronin
,
K. A.
, eds.,
2021
,
National Cancer Institute, Surveillance, Epidemiology, and End Results Program, SEER Cancer Statistics Review, 1975–2018
,
National Cancer Institute, Bethesda, MD
.https://seer.cancer.gov/archive/csr/1975_2018/
4.
Yu
,
S. J.
,
2016
, “
A Concise Review of Updated Guidelines Regarding the Management of Hepatocellular Carcinoma Around the World: 2010-2016
,”
Clin. Mol. Hepatol.
,
22
(
1
), pp.
7
17
.10.3350/cmh.2016.22.1.7
5.
Morris
,
D. L.
,
Horton
,
M. D.
,
Dilley
,
A. V.
,
Warlters
,
A.
, and
Clingan
,
P. R.
,
1993
, “
Treatment of Hepatic Metastases by Cryotherapy and Regional Cytotoxic Perfusion
,”
Gut
,
34
(
9
), pp.
1156
1157
.10.1136/gut.34.9.1156
6.
Sutter
,
O.
,
Calvo
,
J.
,
N'Kontchou
,
G.
,
Nault
,
J.-C.
,
Ourabia
,
R.
,
Nahon
,
P.
,
Ganne-Carrié
,
N.
,
Bourcier
,
V.
,
Zentar
,
N.
,
Bouhafs
,
F.
,
Sellier
,
N.
,
Diallo
,
A.
, and
Seror
,
O.
,
2017
, “
Safety and Efficacy of Irreversible Electroporation for the Treatment of Hepatocellular Carcinoma Not Amenable to Thermal Ablation Techniques: A Retrospective Single-Center Case Series
,”
Radiology
,
284
(
3
), pp.
877
886
.10.1148/radiol.2017161413
7.
Shen
,
H.-P.
,
Gong
,
J.-P.
, and
Zuo
,
G.-Q.
,
2011
, “
Role of High-Intensity Focused Ultrasound in Treatment of Hepatocellular Carcinoma
,”
Am. Surg.
,
77
(
11
), pp.
1496
501
.10.1177/000313481107701140
8.
Gail Ter
,
H.
, and
Coussios
,
C.
,
2007
, “
High Intensity Focused Ultrasound: Physical Principles and Devices: High Intensity Focused Ultrasound
,”
Int. J. Hyperthermia
,
23
(
2
), pp.
89
104
.10.1080/02656730601186138
9.
Cheung
,
T. T.
,
Fan
,
S. T.
,
Chu
,
F. S. K.
,
Jenkins
,
C. R.
,
Chok
,
K. S. H.
,
Tsang
,
S. H. Y.
,
Dai
,
W. C.
,
Chan
,
A. C. Y.
,
Chan
,
S. C.
,
Yau
,
T. C. C.
,
Poon
,
R. T. P.
, and
Lo
,
C. M.
,
2013
, “
Survival Analysis of High‐Intensity Focused Ultrasound Ablation in Patients With Small Hepatocellular Carcinoma
,”
HPB (Oxford, Engl.)
,
15
(
8
), pp.
567
573
.10.1111/hpb.12025
10.
Fukuda
,
H.
,
Ito
,
R.
,
Ohto
,
M.
,
Sakamoto
,
A.
,
Karasawa
,
E.
,
Yamaguchi
,
T.
,
Shinozuka
,
N.
,
Zhu
,
H.
, and
Wanga
,
Z.-B.
,
2011
, “
Treatment of Small Hepatocellular Carcinomas With US-Guided High-Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
37
(
8
), pp.
1222
1229
.10.1016/j.ultrasmedbio.2011.04.020
11.
Xu
,
G.
,
Luo
,
G.
,
He
,
L.
,
Li
,
J.
,
Shan
,
H.
,
Zhang
,
R.
,
Li
,
Y.
,
Gao
,
X.
,
Lin
,
S.
, and
Wang
,
G.
,
2011
, “
Follow-Up of High-Intensity Focused Ultrasound Treatment for Patients With Hepatocellular Carcinoma
,”
Ultrasound Med. Biol.
,
37
(
12
), pp.
1993
1999
.10.1016/j.ultrasmedbio.2011.08.011
12.
Zhang
,
L.
,
Zhu
,
H.
,
Jin
,
C.
,
Zhou
,
K.
,
Li
,
K.
,
Su
,
H.
,
Chen
,
W.
,
Bai
,
J.
, and
Wang
,
Z.
,
2009
, “
High-Intensity Focused Ultrasound (HIFU): Effective and Safe Therapy for Hepatocellular Carcinoma Adjacent to Major Hepatic Veins
,”
Eur. Radiol.
,
19
(
2
), pp.
437
445
.10.1007/s00330-008-1137-0
13.
Chan
,
A. C. Y.
,
Cheung
,
T. T.
,
Fan
,
S. T.
,
Chok
,
K. S. H.
,
Chan
,
S. C.
,
Poon
,
R. T. P.
, and
Lo
,
C. M.
,
2013
, “
Survival Analysis of High-Intensity Focused Ultrasound Therapy Versus Radiofrequency Ablation in the Treatment of Recurrent Hepatocellular Carcinoma
,”
Ann. Surg.
,
257
(
4
), pp.
686
692
.10.1097/SLA.0b013e3182822c02
14.
Cheung
,
T. T.
,
Chu
,
F. S. K.
,
Jenkins
,
C. R.
,
Tsang
,
D. S. F.
,
Chok
,
K. S. H.
,
Chan
,
A. C. Y.
,
Yau
,
T. C. C.
,
Chan
,
S. C.
,
Poon
,
R. T. P.
,
Lo
,
C. M.
, and
Fan
,
S. T.
,
2012
, “
Tolerance of High-Intensity Focused Ultrasound Ablation in Patients With Hepatocellular Carcinoma
,”
World J. Surg.
,
36
(
10
), pp.
2420
2427
.10.1007/s00268-012-1660-7
15.
Wang
,
J.
,
Zhao
,
Z.
,
Shen
,
S.
,
Zhang
,
C.
,
Guo
,
S.
,
Lu
,
Y.
,
Chen
,
Y.
,
Liao
,
W.
,
Liao
,
Y.
, and
Bin
,
J.
,
2015
, “
Selective Depletion of Tumor Neovasculature by Microbubble Destruction With Appropriate Ultrasound Pressure
,”
Int. J. Cancer
,
137
(
10
), pp.
2478
2491
.10.1002/ijc.29597
16.
Wood
,
A. K. W.
, and
Sehgal
,
C. M.
,
2015
, “
A Review of Low-Intensity Ultrasound for Cancer Therapy
,”
Ultrasound Med. Biol.
,
41
(
4
), pp.
905
928
.10.1016/j.ultrasmedbio.2014.11.019
17.
Wood
,
A. K. W.
,
Bunte
,
R. M.
,
Price
,
H. E.
,
Deitz
,
M. S.
,
Tsai
,
J. H.
,
Lee
,
W. M.
, and
Sehgal
,
C.
,
2008
, “
The Disruption of Murine Tumor Neovasculature by Low-Intensity Ultrasound—Comparison Between 1- and 3-MHz Sonication Frequencies
,”
Acad. Radiol.
,
15
(
9
), pp.
1133
1141
.10.1016/j.acra.2008.04.012
18.
Wood
,
A. K. W.
,
Ansaloni
,
S.
,
Ziemer
,
L. S.
,
Lee
,
W. M. F.
,
Feldman
,
M. D.
, and
Sehgal
,
C. M.
,
2005
, “
The Antivascular Action of Physiotherapy Ultrasound on Murine Tumors
,”
Ultrasound Med. Biol.
,
31
(
10
), pp.
1403
1410
.10.1016/j.ultrasmedbio.2005.06.008
19.
Wood
,
A. K. W.
,
Schultz
,
S. M.
,
Lee
,
W. M. F.
,
Bunte
,
R. M.
, and
Sehgal
,
C. M.
,
2010
, “
Antivascular Ultrasound Therapy Extends Survival of Mice With Implanted Melanomas
,”
Ultrasound Med. Biol.
,
36
(
5
), pp.
853
857
.10.1016/j.ultrasmedbio.2010.02.001
20.
D'Souza
,
J. C.
,
Sultan
,
L. R.
,
Hunt
,
S. J.
,
Gade
,
T. P.
,
Karmacharya
,
M. B.
,
Schultz
,
S. M.
,
Brice
,
A. K.
,
Wood
,
A. K. W.
, and
Sehgal
,
C. M.
,
2019
, “
Microbubble-Enhanced Ultrasound for the Antivascular Treatment and Monitoring of Hepatocellular Carcinoma
,”
Nanotheranostics (Sydney, Nsw)
,
3
(
4
), pp.
331
341
.10.7150/ntno.39514
21.
Hunt
,
S. J.
,
Gade
,
T.
,
Soulen
,
M. C.
,
Pickup
,
S.
, and
Sehgal
,
C. M.
,
2015
, “
Antivascular Ultrasound Therapy: Magnetic Resonance Imaging Validation and Activation of the Immune Response in Murine Melanoma
,”
J. Ultrasound Med.
,
34
(
2
), pp.
275
287
.10.7863/ultra.34.2.275
22.
Bunte
,
R. M.
,
Ansaloni
,
S.
,
Sehgal
,
C. M.
,
Lee
,
W. M. F.
, and
Wood
,
A. K. W.
,
2006
, “
Histopathological Observations of the Antivascular Effects of Physiotherapy Ultrasound on a Murine Neoplasm
,”
Ultrasound Med. Biol.
,
32
(
3
), pp.
453
461
.10.1016/j.ultrasmedbio.2005.12.005
23.
Yang
,
C.
,
Lee
,
D. H.
,
Mangraviti
,
A.
,
Su
,
L.
,
Zhang
,
K.
,
Zhang
,
Y.
,
Zhang
,
B.
,
Li
,
W.
,
Tyler
,
B.
,
Wong
,
J.
,
Wang
,
K. K.
,
Velarde
,
E.
,
Zhou
,
J.
, and
Ding
,
K.
,
2015
, “
Quantitative Correlational Study of Microbubble-Enhanced Ultrasound Imaging and Magnetic Resonance Imaging of Glioma and Early Response to Radiotherapy in a Rat Model
,”
Med. Phys.
,
42
(
8
), pp.
4762
4772
.10.1118/1.4926550
24.
Karmacharya
,
M. B.
,
Sultan
,
L. R.
, and
Sehgal
,
C. M.
,
2021
, “
Photoacoustic Monitoring of Oxygenation Changes Induced by Therapeutic Ultrasound in Murine Hepatocellular Carcinoma
,”
Sci. Rep.
,
11
(
1
), p.
4100
.10.1038/s41598-021-83439-y
25.
Liu
,
H. L.
,
Chang
,
H.
,
Chen
,
W. S.
,
Shih
,
T. C.
,
Hsiao
,
J. K.
, and
Lin
,
W. L.
,
2007
, “
Feasibility of Transrib Focused Ultrasound Thermal Ablation for Liver Tumors Using a Spherically Curved 2D Array: A Numerical Study
,”
Med. Phys.
,
34
(
9
), pp.
3436
3448
.10.1118/1.2759888
26.
Dewey
,
W. C.
,
1994
, “
Arrhenius Relationships From the Molecule and Cell to the Clinic
,”
Int. J. Hyperthermia
,
10
(
4
), pp.
457
483
.10.3109/02656739409009351
27.
Zhu
,
L.
,
Altman
,
M. B.
,
Laszlo
,
A.
,
Straube
,
W.
,
Zoberi
,
I.
,
Hallahan
,
D. E.
, and
Chen
,
H.
,
2019
, “
Ultrasound Hyperthermia Technology for Radiosensitization
,”
Ultrasound Med. Biol.
,
45
(
5
), pp.
1025
1043
.10.1016/j.ultrasmedbio.2018.12.007
28.
Rathod
,
V. T.
,
2019
, “
A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
,”
Electronics (Basel)
,
8
(
2
), p.
169
.10.3390/electronics8020169
You do not currently have access to this content.