Abstract

The objective of this study was to outline a fully automated, X-ray-based, mass-customization pipeline for knee replacement surgery, thoroughly evaluate its robustness across a range of demographics, and quantify necessary input requirements. The pipeline developed uses various machine learning-based methods to enable the automated workflow. Convolutional neural networks initially extract information from inputted bi-planar X-rays, point depth and statistical shape models are used to reconstruct three-dimensional models of the subjects' anatomy, and finally computer-aided design scripts are employed to generate customized implant designs. The pipeline was tested on a range of subjects using three different fit metrics to evaluate performance. A digitally reconstructed radiograph method was adopted to enable a sensitivity analysis of input X-ray alignment and calibration. Subject sex, height, age, and knee side were concluded not to significantly impact performance. The pipeline was found to be sensitive to subject ethnicity, but this was likely due to limited diversity in the training data. Arthritis severity was also found to impact performance, suggesting further work is required to confirm suitability for use with more severe cases. X-ray alignment and dimensional calibration were highlighted as paramount to achieve accurate results. Consequentially, an alignment accuracy of ±5–10 deg and dimensional calibration accuracy of ±2–5%, are stipulated. In summary, the study demonstrated the pipeline's robustness and suitability for a broad range of subjects. The tool could afford substantial advantages over off-the-shelf and other customization solutions, but practical implications such as regulatory requirements need to be further considered.

References

1.
Evers
,
M.
,
2019
, “
Robotics, ASCs Will Continue to Drive Knee Replacement Market Trends. Orthoworld
,” ORTHOWORLD Inc., Chagrin Falls, OH, accessed July 20, 2022, https://www.orthoworld.com/robotics-ascs-will-continue-to-drive-knee-market-trends/
2.
Hernandez-Vaquero
,
D.
,
Abat
,
F.
,
Sarasquete
,
J.
, and
Monllau
,
J. C.
,
2013
, “
Reliability of Preoperative Measurement With Standardized Templating in Total Knee Arthroplasty
,”
World J. Orthop.
,
4
(
4
), pp.
287
290
.10.5312/wjo.v4.i4.287
3.
Sharma
,
G.
,
Liu
,
D.
,
Malhotra
,
R.
,
Zhou
,
Y. X.
,
Akagi
,
M.
, and
Kim
,
T. K.
,
2017
, “
Availability of Additional Mediolateral Implant Option During Total Knee Arthroplasty Improves Femoral Component Fit Across Ethnicities Results of a Multicenter Study
,”
JBJS Open Access
,
2
(
2
), p.
e0014
.10.2106/JBJS.OA.16.00014
4.
Mahoney
,
O. M.
, and
Kinsey
,
T.
,
2010
, “
Overhang of the Femoral Component in Total Knee Arthroplasty: Risk Factors and Clinical Consequences
,”
J. Bone Jt. Surg.
,
92A
(
5
), pp.
1115
1121
.10.2106/JBJS.H.00434
5.
Schroeder
,
L.
, and
Martin
,
G.
,
2019
, “
In Vivo Tibial Fit and Rotational Analysis of a Customized, Patient-Specific TKA Versus Off-the-Shelf TKA
,”
J. Knee Surg.
,
32
(
06
), pp.
499
505
.10.1055/s-0038-1653966
6.
ConforMIS
,
2018
,
Implant Summary Report for the iTotal G2 XE and iTotal G2 (Bicondylar Tray)
. Beyond Compliance Database,
Northgate Public Services (UK)
.https://www.conformis.com/uploads/2018/03/BC_Report_KP_Femoral_iTotal-G2-XE-and-iTotal-G2-Bicondylartray_11-02-18.pdf
7.
Culler
,
S. D.
,
Martin
,
G. M.
, and
Swearingen
,
A.
,
2017
, “
Comparison of Adverse Events Rates and Hospital Cost Between Customized Individually Made Implants and Standard Off-the-Shelf Implants for Total Knee Arthroplasty
,”
Arthroplasty Today
,
3
(
4
), pp.
257
263
.10.1016/j.artd.2017.05.001
8.
Buller
,
L. T.
,
Menken
,
L.
, and
Rodriguez
,
J. A.
,
2018
, “
The Custom Total Knee Replacement: A Bespoke Solution
,”
Semin. Arthroplasty
,
29
(
3
), pp.
209
213
.10.1053/j.sart.2019.01.006
9.
Jun
,
Y.
,
2011
, “
Morphological Analysis of the Human Knee Joint for Creating Custom-Made Implant Models
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9–12
), pp.
841
853
.10.1007/s00170-010-2785-1
10.
He
,
Y.
,
Ye
,
M.
, and
Wang
,
C.
,
2006
, “
A Method in the Design and Fabrication of Exact-Fit Customized Implant Based on Sectional Medical Images and Rapid Prototyping Technology
,”
Int. J. Adv. Manuf. Technol.
,
28
(
5–6
), pp.
504
508
.10.1007/s00170-004-2406-y
11.
ConforMIS,
2021
, “
Knee and Hip Replacements for Each Patient's Unique Anatomy
,” ConforMIS, Inc., Bedford, MA, accessed July 20, 2022, https://www.conformis.com/
12.
Seeking Alpha
,
2019
,
Conformis is a Failed Market Experiment, No Justification for Its 400%+ Rally - $0.50 Price Target
,
Seeking Alpha
, New York.
13.
Tanzer
,
M.
, and
Makhdom
,
A. M.
,
2016
, “
Preoperative Planning in Primary Total Knee Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
,
24
(
4
), pp.
220
230
.10.5435/JAAOS-D-14-00332
14.
Burge
,
T. A.
,
Jeffers
,
J. R. T.
, and
Myant
,
C. W.
,
2022
, “
Development of an Automated Mass-Customization Pipeline for Knee Replacement Surgery Using Biplanar X-Rays
,”
ASME J. Mech. Des.
,
144
(
2
), pp.
1
11
.10.1115/1.4052192
15.
Lee
,
S. H.
, and
Lee
,
S. B.
,
2010
, “
Production and Usage of Korean Human Information in KISTI
,”
J. Korea Contents Assoc.
,
10
(
5
), pp.
416
421
.10.5392/JKCA.2010.10.5.416
16.
Nevitt
,
M.
,
Felson
,
D.
, and
Lester
,
G.
,
2006
,
The Osteoarthritis Initiative: Protocol for the Cohort Study
,
The Osteoarthritis Initiative
.https://nda.nih.gov/static/docs/StudyDesignProtocolAndAppendices.pdf
17.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
18.
Kellgren
,
J. H.
, and
Lawrence
,
J. S.
,
1957
, “
Radiological Assessment of Osteo-Arthritis
,”
Ann. Rheum. Dis.
,
16
(
4
), pp.
494
502
.10.1136/ard.16.4.494
19.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D. G.
,
Steiner
,
B.
,
Tucker
,
P.
,
Vasudevan
,
V.
,
Warden
,
P.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
Proceedings of the 12th USENIX Symposium on Operating Systems
, Savannah, GA, Nov. 2–4, pp.
265
283
.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
20.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Med. Image Comput. Comput. Assist. Interv. Lecture Notes Comput. Sci.
,
9351
, pp.
234
241
.10.48550/arXiv.1505.04597
21.
Machado
,
F.
,
Malpica
,
N.
, and
Borromeo
,
S.
,
2019
, “
Parametric CAD Modeling for Open Source Scientific Hardware: Comparing OpenSCAD and FreeCAD Python Scripts
,”
PLoS ONE
,
14
(
12
), p.
e0225795
.10.1371/journal.pone.0225795
22.
Schnurr
,
C.
,
Csécsei
,
G.
,
Nessler
,
J.
,
Eysel
,
P.
, and
König
,
D. P.
,
2011
, “
How Much Tibial Resection is Required in Total Knee Arthroplasty?
,”
Int. Orthop.
,
35
(
7
), pp.
989
994
.10.1007/s00264-010-1025-5
23.
Cerveri
,
P.
,
Costanza
,
S.
,
Gianluca
,
O.
,
Manzotti
,
A.
, and
Baroni
,
G.
,
2017
, “
2D/3D Reconstruction of the Distal Femur Using Statistical Shape Models Addressing Personalized Surgical Instruments in Knee Arthroplasty: A Feasibility Analysis
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
13
(
4
), pp.
1
13
.10.1002/rcs.1823
24.
Dai
,
Y.
,
Scuderi
,
G. R.
,
Penninger
,
C.
,
Bischoff
,
J. E.
, and
Rosenberg
,
A.
,
2014
, “
Increased Shape and Size Offerings of Femoral Components Improve Fit During Total Knee Arthroplasty
,”
Knee Surg Sport. Traumatol. Arthrosc.
,
22
(
12
), pp.
2931
2940
.10.1007/s00167-014-3163-6
25.
Shao
,
L.
,
Wu
,
X.
,
Wang
,
T.
,
Liu
,
X.
,
Xu
,
W.
,
Huang
,
W.
, and
Zeng
,
Z.
,
2020
, “
Approximating the Maximum Tibial Coverage in Total Knee Arthroplasty Does Not Necessarily Result in Implant Malrotation
,”
Sci. Rep.
,
10
(
1
), pp.
1
9
.10.1038/s41598-020-67613-2
26.
Bonnin
,
M. P.
,
Schmidt
,
A.
,
Basiglini
,
L.
,
Bossard
,
N.
, and
Dantony
,
E.
,
2013
, “
Mediolateral Oversizing Influences Pain, Function, and Flexion After TKA
,”
Knee Surg. Sport. Traumatol. Arthrosc.
,
21
(
10
), pp.
2314
2324
.10.1007/s00167-013-2443-x
27.
Wernecke
,
G. C.
,
Harris
,
I. A.
,
Houang
,
M. T. W.
,
Seeto
,
B. G.
,
Chen
,
D. B.
, and
MacDessi
,
S. J.
,
2012
, “
Comparison of Tibial Bone Coverage of 6 Knee Prostheses: A Magnetic Resonance Imaging Study With Controlled Rotation
,”
J. Orthop. Surg. (Hong Kong)
,
20
(
2
), pp.
143
147
.10.1177/230949901202000201
28.
Clary
,
C.
,
Aram
,
L.
,
Deffenbaugh
,
D.
, and
Heldreth
,
M.
,
2014
, “
Tibial Base Design and Patient Morphology Affecting Tibial Coverage and Rotational Alignment After Total Knee Arthroplasty
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
22
(
12
), pp.
3012
3018
.10.1007/s00167-014-3402-x
29.
Mahfouz
,
M.
,
Fatah
,
E. E. A.
,
Bowers
,
L. S.
, and
Scuderi
,
G.
,
2012
, “
Three-Dimensional Morphology of the Knee Reveals Ethnic Differences
,”
Clin. Orthop. Relat. Res.
,
470
(
1
), pp.
172
185
.10.1007/s11999-011-2089-2
30.
Skou
,
S. T.
,
Roos
,
E. M.
,
Laursen
,
M. B.
,
Rathleff
,
M. S.
,
Arendt-Nielsen
,
L.
,
Rasmussen
,
S.
, and
Simonsen
,
O.
,
2018
, “
Total Knee Replacement and Non-Surgical Treatment of Knee Osteoarthritis: 2-Year Outcome From Two Parallel Randomized Controlled Trials
,”
Osteoarthritis Cartilage
,
26
(
9
), pp.
1170
1180
.10.1016/j.joca.2018.04.014
31.
Wimsey
,
S.
,
Pickard
,
R.
, and
Shaw
,
G.
,
2006
, “
Accurate Scaling of Digital Radiographs of the Pelvis. A Prospective Trial of Two Methods
,”
J. Bone Jt. Surg. Ser. B
,
88-B
(
11
), pp.
1508
1512
.10.1302/0301-620X.88B11.18017
32.
Tack
,
A.
,
Preim
,
B.
, and
Zachow
,
S.
,
2021
, “
Fully Automated Assessment of Knee Alignment From Full-Leg X-Rays Employing a” YOLOv4 and Resnet Landmark Regression Algorithm” (YARLA): Data From the Osteoarthritis Initiative
,”
Comput. Methods Prog. Biomed.
,
205
, p.
106080
.10.1016/j.cmpb.2021.106080
33.
Konovalov
,
D. A.
,
Domingos
,
J. A.
,
Bajema
,
C.
,
White
,
R. D.
, and
Jerry
,
D. R.
,
2017
, “
Ruler Detection for Automatic Scaling of Fish Images
,”
ACM International Conference Proceeding
, Bangkok, Thailand, Aug. 25–27, pp.
90
95
.10.1145/3133264.3133271
34.
Arnholdt
,
J.
,
Kamawal
,
Y.
,
Horas
,
K.
,
Holzapfel
,
B. M.
,
Gilbert
,
F.
,
Ripp
,
A.
,
Rudert
,
M.
, and
Steinert
,
A. F.
,
2020
, “
Accurate Implant Fit and Leg Alignment After Cruciate-Retaining Patient-Specific Total Knee Arthroplasty
,”
BMC Musculoskeletal Disorders
,
21
(
1
), pp.
1
8
.10.1186/s12891-020-03707-2
35.
Mattheijer
,
J.
,
Herder
,
J. L.
,
Tuijthof
,
G. J. M.
,
Nelissen
,
R. G. H. H.
,
Dankelman
,
J.
, and
Valstar
,
E. R.
,
2013
, “
Shaping Patient Specific Surgical Guides for Arthroplasty to Obtain High Docking Robustness
,”
ASME J. Mech. Des.
,
135
(
7
), p. 071001.10.1115/1.4024231
36.
George
,
S. P.
, and
Kumar
,
G. S.
,
2013
, “
Patient Specific Parametric Geometric Modelling and Finite Element Analysis of Cementless Hip Prosthesis
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
65
83
.10.1080/17452759.2012.755654
37.
Ghouse
,
S.
,
Reznikov
,
N.
,
Boughton
,
O. R.
,
Babu
,
S.
,
Ng
,
G.
,
Blunn
,
G.
,
Cobb
,
J. P.
,
Stevens
,
M. M.
, and
Jeffers
,
J.
,
2019
, “
The Design and In Vivo Testing of a Locally Stiffness-Matched Porous Scaffold
,”
Appl. Mater. Today
,
15
, pp.
377
388
.10.1016/j.apmt.2019.02.017
38.
Wang
,
Y.
,
Arabnejad
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density
,”
ASME J. Mech. Des.
,
140
(
11
), pp.
1
13
.10.1115/1.4041208
39.
Munford
,
M. J.
,
Xiao
,
D.
, and
Jeffers
,
J. R. T.
,
2022
, “
Lattice Implants That Generate Homeostatic and Remodeling Strains in Bone
,”
J. Orthop. Res.
,
40
(
4
), pp.
871
877
.10.1002/jor.25114
You do not currently have access to this content.