Abstract

Artificial anal sphincter has gradually become an emerging means of treating anal incontinence. However, most of the systems cannot be implanted in the human body for a long time due to insufficient reliability. Therefore, this paper has designed and improved a novel bionic artificial anal sphincter (BAAS). In order to make it work reliably for a long time, we first optimized and improved key parts to increase their strength. Given the humid working environment in the body, we optimized the design of the waterproof pressure sensor and carried out experimental research on the sealing of the circuit board and the overall sealing. When evaluating the improved system, I used simulation to analyze the structural strength and motion characteristics of the BAAS and used underwater experiments to simulate the human environment to evaluate the waterproofness of the system. The results showed that the strength of the key joint increased by 49.4%, the average clamping time and opening time of the prosthesis were 14.5 s and 13.4 s, respectively, and the angular velocity of the pendulum rod approaching the intestine was about 4.5 deg/s, which was in line with the normal defecation process of the human body. The performance is stable and reliable in the 20-day underwater body fluid simulation experiment. BAAS basically meets the application needs of long-term implantation in the treatment of fecal incontinence.

References

1.
Lee
,
L. M.
,
Zifan
,
A.
,
Kunkel
,
D. C.
,
Sah
,
R.
, and
Mittal
,
R. K.
,
2019
, “
High‐Frequency Ultrasound Imaging of the Anal Sphincter Muscles in Normal Subjects and Patients With Fecal Incontinence
,”
Neurogastroent. Motil.
,
31
(
4
), p.
e13537
.10.1111/nmo.13537
2.
Deb
,
B.
,
Prichard
,
D. O.
, and
Bharucha
,
A. E.
,
2020
, “
Constipation and Fecal Incontinence in the Elderly
,”
Curr. Gastroenterol. Rep.
,
22
(
11
), pp.
1
16
.10.1007/s11894-020-00791-1
3.
Narayanan
,
S. P.
, and
Bharucha
,
A. E.
,
2019
, “
A Practical Guide to Biofeedback Therapy for Pelvic Floor Disorders
,”
Curr. Gastroenterol. Rep.
,
21
(
5
), pp.
1
8
.10.1007/s11894-019-0688-3
4.
Bharucha
,
A. E.
,
Rao
,
S. S.
, and
Shin
,
A. S.
,
2017
, “
Surgical Interventions and the Use of Device-Aided Therapy for the Treatment of Fecal Incontinence and Defecatory Disorders
,”
Clin. Gastroenterol. Hepatol.
,
15
(
12
), pp.
1844
1854
.10.1016/j.cgh.2017.08.023
5.
Mellgren
,
A.
,
Matzel
,
K. E.
,
Pollack
,
J.
,
Hull
,
T.
,
Bernstein
,
M.
, and
Graf
,
W.
,
The Nasha Dx Study Group
2014
, “
Long‐Term Efficacy of NASHA Dx Injection Therapy for Treatment of Fecal Incontinence
,”
Neurogastroent. Motil.
,
26
(
8
), pp.
1087
1094
.10.1111/nmo.12360
6.
Weledji
,
E. P.
, and
Marti
,
L.
,
2021
, “
A Historical Perspective of Sacral Nerve Stimulation (SNS) for Bowel Dysfunction
,”
IJS Short Rep.
,
6
(
3
), pp.
e25
e25
.10.1097/SR9.0000000000000025
7.
Kreydin
,
E. I.
,
Chaudhry
,
Z. Q.
,
Kazanjian
,
K. K.
, and
Lin
,
A. Y.
,
2019
, “
Anal Sphincteroplasty in the Minimally Invasive Era: Assessment of National Trends and Complications
,”
Am. Surg.
,
85
(
1
), pp.
46
51
.10.1177/000313481908500123
8.
Berti-Hearn
,
L.
, and
Elliott
,
B.
,
2019
, “
Colostomy Care: A Guide for Home Care Clinicians
,”
Home Healthcare Now
,
37
(
2
), pp.
68
78
.10.1097/NHH.0000000000000735
9.
van der Wilt
,
A. A.
,
Breukink
,
S. O.
,
Sturkenboom
,
R.
,
Stassen
,
L. P.
,
Baeten
,
C. G.
, and
Melenhorst
,
J.
,
2020
, “
The Artificial Bowel Sphincter in the Treatment of Fecal Incontinence, Long-Term Complications
,”
Dis. Colon Rectum
,
63
(
8
), pp.
1134
1141
.10.1097/DCR.0000000000001683
10.
Pakravan
,
F.
,
Helmes
,
C.
, and
Alldinger
,
I.
,
2018
, “
Magnetic Sphincter Augmentation in Patients With Fecal Incontinence After Failure of an Implanted Artificial Bowel Sphincter
,”
Coloproctology
,
40
(
2
), pp.
127
129
.10.1007/s00053-018-0241-0
11.
Luo
,
Y.
,
Higa
,
M.
,
Amae
,
S.
,
Takagi
,
T.
,
Yambe
,
T.
,
Okuyama
,
T.
,
Tanaka
,
H.
,
Kakubari
,
Y.
, and
Matsuki
,
H.
,
2006
, “
Preclinical Development of SMA Artificial Anal Sphincters
,”
Min. Invas. Ther.
,
15
(
4
), pp.
241
245
.10.1080/13645700600836695
12.
Zan
,
P.
,
Ding
,
Q.
,
Yang
,
B.
,
Zhang
,
G.
,
Xue
,
Y.
, and
Zhao
,
Y.
,
2021
, “
Research on Biomechanical Compatibility for the Artificial Anal Sphincter Based on Improved Actuator
,”
ASME J. Med. Devices
,
15
(
3
), pp.
31003
31011
.10.1115/1.4050659
13.
Wang
,
M.
, and
Yu
,
H.
,
2019
, “
A Novel Artificial Anal Sphincter With Constant Force
,”
Int. J. Appl. Electrom.
,
59
(
3
), pp.
1135
1141
.10.3233/JAE-171065
14.
Ke
,
L.
,
Yan
,
G.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Liu
,
D.
,
2015
, “
Design and Evaluation of an Intelligent Artificial Anal Sphincter System Powered by an Adaptive Transcutaneous Energy Transfer System
,”
Int. J. Artif. Organs
,
38
(
3
), pp.
154
160
.10.5301/ijao.5000386
15.
Jin
,
W.
,
Yan
,
G.
,
Wu
,
H.
,
Lu
,
S.
, and
Zhou
,
Z.
,
2017
, “
Preliminary Study of a Novel Puborectalis‐Like Artificial Anal Sphincter
,”
Artif. Organs
,
41
(
9
), pp.
845
851
.10.1111/aor.12874
16.
Zhou
,
Z.
,
Yan
,
G.
,
Wang
,
Z.
,
Wu
,
C.
, and
Hua
,
F.
,
2019
, “
A Novel Power Supply System for Puborectalis‐Like Artificial Anal Sphincter
,”
Artif. Organs
,
43
(
6
), pp.
E109
E123
.10.1111/aor.13398
17.
Han
,
D.
,
Yan
,
G.
,
Wang
,
Z.
,
Jiang
,
P.
,
Liu
,
D.
,
Zhao
,
K.
, and
Ma
,
J.
,
2021
, “
An Artificial Anal Sphincter Based on a Novel Clamping Mechanism: Design, Analysis, and Testing
,”
Artif. Organs
,
45
(
8
), pp.
E293
E303
.10.1111/aor.13924
18.
Poylin
,
V.
, and
Cataldo
,
T. E.
,
2016
, “
Anal Physiology: The Physiology of Continence and Defecation
,”
The ASCRS Textbook of Colon and Rectal Surgery
,
Springer
,
Cham
, pp.
37
44
.
19.
Cai
,
D.
,
Liang
,
J.
,
Ou
,
H.
,
Li
,
G.
, and
Cui
,
J.
,
2021
, “
Mechanical Properties and Joining Mechanism of Electrohydraulic Expansion Joints for 6063 Aluminum Alloy/304 Stainless Steel Thin-Walled Pipes
,”
Thin Wall. Struct.
,
161
, p.
107427
.10.1016/j.tws.2020.107427
20.
Zhang
,
L. C.
, and
Chen
,
L. Y.
,
2019
, “
A Review on Biomedical Titanium Alloys: Recent Progress and Prospect
,”
Adv. Eng. Mater.
,
21
(
4
), p.
1801215
.10.1002/adem.201801215
21.
Zhu
,
Z.
,
Lu
,
Y.
,
Xie
,
Q.
,
Li
,
D.
, and
Gao
,
N.
,
2017
, “
Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel
,”
Mater. Des.
,
119
, pp.
171
179
.10.1016/j.matdes.2017.01.066
22.
Kumar
,
S.
,
Nehra
,
M.
,
Kedia
,
D.
,
Dilbaghi
,
N.
,
Tankeshwar
,
K.
, and
Kim
,
K. H.
,
2020
, “
Nanotechnology-Based Biomaterials for Orthopaedic Applications: Recent Advances and Future Prospects
,”
Mat. Sci. Eng. C Mater.
,
106
, p.
110154
.10.1016/j.msec.2019.110154
23.
Hermawan
,
M. V.
,
Anggono
,
A. D.
,
Siswanto
,
W. A.
, and
Riyadi
,
T. W. B.
,
2019
, “
The Influence of Material Properties to the Stress Distribution on Piston, Connecting Rod and Crankshaft of Diesel Engine
,”
Int. J. Mech. Mechatronics Eng.
,
19
(
6
), pp.
13
26
.https://www.researchgate.net/publication/338149899_The_Influence_of_Material_Properties_to_the_Stress_Distribution_on_Piston_Connecting_Rod_and_Crankshaft_of_Diesel_Engine
24.
Wu
,
H.
,
Wang
,
Z.
,
Yan
,
G.
,
Jin
,
W.
,
Lu
,
S.
, and
Zhou
,
Z.
,
2017
, “
A Novel Puborectalis Muscle Artificial Anal Sphincter System With the Module of Sensory Perception
,”
J. Med. Eng. Technol.
,
41
(
2
), pp.
97
107
.10.1080/03091902.2016.1226438
25.
Yang
,
P. J.
,
LaMarca
,
M.
,
Kaminski
,
C.
,
Chu
,
D. I.
, and
Hu
,
D. L.
,
2017
, “
Hydrodynamics of Defecation
,”
Soft Matter
,
13
(
29
), pp.
4960
4970
.10.1039/C6SM02795D
26.
Vertzoni
,
M.
,
Kersten
,
E.
,
van der Mey
,
D.
,
Muenster
,
U.
, and
Reppas
,
C.
,
2018
, “
Evaluating the Clinical Importance of Bacterial Degradation of Therapeutic Agents in the Lower Intestine of Adults Using Adult Fecal Material
,”
Eur. J. Pharm. Sci.
,
125
, pp.
142
150
.10.1016/j.ejps.2018.09.019
27.
Rose
,
C.
,
Parker
,
A.
,
Jefferson
,
B.
, and
Cartmell
,
E.
,
2015
, “
The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology
,”
Crit. Rev. Environ. Sci. Technol.
,
45
(
17
), pp.
1827
1879
.10.1080/10643389.2014.1000761
You do not currently have access to this content.