Abstract

People who frequently use micropipettes experience hand and upper limb disorders. The basilar thumb joint, also known as the first carpometacarpal or trapeziometacarpal joint, is commonly affected by osteoarthritis (OA). Mechanical factors are associated with OA initiation and progression. We developed a magnetic resonance imaging (MRI)-compatible modular micropipette simulator to improve understanding of how micropipette design affects basilar thumb joint contact mechanics. The micropipette simulator also addresses limitations of current techniques for studying pipetting and basilar thumb joint mechanics. Its modularity will allow future studies to examine handle design parameters such as handle diameter, cross-sectional shape, and other features. A micropipette simulator with a cylindrical handle (length 127 mm, diameter 25 mm) was used with one subject to demonstrate the system's feasibility. Contact areas were within the range of prior data from basilar thumb joint models in power grasp and lateral pinch, and contact pressures were the same order of magnitude.

References

1.
Dahaghin
,
S.
,
Bierma-Zeinstra
,
S. M.
,
Ginai
,
A. Z.
,
Pols
,
H. A.
,
Hazes
,
J. M.
, and
Koes
,
B. W.
,
2005
, “
Prevalence and Pattern of Radiographic Hand Osteoarthritis and Association With Pain and Disability (the Rotterdam Study)
,”
Ann. Rheum. Dis.
,
64
(
5
), pp.
682
687
.10.1136/ard.2004.023564
2.
Wilder
,
F. V.
,
Barrett
,
J. P.
, and
Farina
,
E. J.
,
2006
, “
Joint-Specific Prevalence of Osteoarthritis of the Hand
,”
Osteoarthritis Cartilage
,
14
(
9
), pp.
953
957
.10.1016/j.joca.2006.04.013
3.
Zhang
,
Y.
,
Niu
,
J.
,
Kelly-Hayes
,
M.
,
Chaisson
,
C. E.
,
Aliabadi
,
P.
, and
Felson
,
D. T.
,
2002
, “
Prevalence of Symptomatic Hand Osteoarthritis and Its Impact on Functional Status Among the Elderly: The Framingham Study
,”
Am. J. Epidemiol.
,
156
(
11
), pp.
1021
1027
.10.1093/aje/kwf141
4.
Björksten
,
M. G.
,
Almby
,
B.
, and
Jansson
,
E. S.
,
1994
, “
Hand and Shoulder Ailments Among Laboratory Technicians Using Modern Plunger-Operated Pipettes
,”
Appl. Ergon.
,
25
(
2
), pp.
88
94
.10.1016/0003-6870(94)90069-8
5.
David
,
G.
, and
Buckle
,
P.
,
1997
, “
A Questionnaire Survey of the Ergonomie Problems Associated With Pipettes and Their Usage With Specific Reference to Work-Related Upper Limb Disorders
,”
Appl. Ergon.
,
28
(
4
), pp.
257
262
.10.1016/S0003-6870(97)00002-1
6.
Holm
,
J. W.
,
Mortensen
,
O. S.
, and
Gyntelberg
,
F.
,
2016
, “
Upper Limb Disorders Among Biomedical Laboratory Workers Using Pipettes
,”
Cogent Med.
,
3
(
1
), p.
1256849
.10.1080/2331205X.2016.1256849
7.
Asundi
,
K. R.
,
Bach
,
J. M.
, and
Rempel
,
D. M.
,
2005
, “
Thumb Force and Muscle Loads Are Influenced by the Design of a Mechanical Pipette and by Pipetting Tasks
,”
Human Factors
,
47
(
1
), pp.
67
76
.10.1518/0018720053653848
8.
Fredriksson
,
K.
,
1995
, “
Laboratory Work With Automatic Pipettes: A Study on How Pipetting Affects the Thumb
,”
Ergonomics
,
38
(
5
), pp.
1067
1073
.10.1080/00140139508925173
9.
Kim
,
E.
,
Aqlan
,
F.
, and
Freivalds
,
A.
,
2020
, “
Development of an Ergonomic Four-Finger-Push Manual Pipette Design
,”
Appl. Ergon.
,
85
, p.
103045
.10.1016/j.apergo.2020.103045
10.
Lee
,
Y. H.
, and
Jiang
,
M. S.
,
1999
, “
An Ergonomic Design and Performance Evaluation of Pipettes
,”
Appl. Ergon.
,
30
(
6
), pp.
487
493
.10.1016/S0003-6870(99)00011-3
11.
Lichty
,
M. G.
,
Janowitz
,
I. L.
, and
Rempel
,
D. M.
,
2011
, “
Ergonomic Evaluation of Ten Single-Channel Pipettes
,”
Work
,
39
(
2
), pp.
177
185
.10.3233/WOR-2011-1164
12.
Maija
,
L.
, and
Nina
,
N.
,
2006
, “
Ergonomics and the Usability of Mechanical Single-Channel Liquid Dosage Pipettes
,”
Int. J. Ind. Ergonom.
,
36
(
3
), pp.
257
263
.10.1016/j.ergon.2005.06.011
13.
Ming-Lun
,
L.
,
Tamara
,
J.
,
Brian
,
L.
,
Marisol
,
B.
, and
Yong-Ku
,
K.
,
2008
, “
An Investigation of Hand Forces and Postures for Using Selected Mechanical Pipettes
,”
Int. J. Ind. Ergonom.
,
38
(
1
), pp.
18
29
.10.1016/j.ergon.2007.08.006
14.
Park
,
J. K.
, and
Buchholz
,
B.
,
2013
, “
Effects of Work Surface Height on Muscle Activity and Posture of the Upper Extremity During Simulated Pipetting
,”
Ergonomics
,
56
(
7
), pp.
1147
1158
.10.1080/00140139.2013.799234
15.
Rempel
,
P.
,
Janowitz
,
I.
,
Alexandre
,
M.
,
Lee
,
D. L.
, and
Rempel
,
D.
,
2011
, “
The Effect of Two Alternative Arm Supports on Shoulder and Upper Back Muscle Loading During Pipetting
,”
Work
,
39
(
2
), pp.
195
200
.10.3233/WOR-2011-1166
16.
Sormunen
,
E.
, and
Nevala
,
N.
,
2013
, “
User-Oriented Evaluation of Mechanical Single-Channel Axial Pipettes
,”
Appl. Ergon.
,
44
(
5
), pp.
785
791
.10.1016/j.apergo.2013.01.009
17.
Staudenmann
,
D.
,
Roeleveld
,
K.
,
Stegeman
,
D. F.
, and
van Dieën
,
J. H.
,
2010
, “
Methodological Aspects of SEMG Recordings for Force Estimation–a Tutorial and Review
,”
J. Electromyogr. Kinesiol.
,
20
(
3
), pp.
375
387
.10.1016/j.jelekin.2009.08.005
18.
Fuller
,
J.
,
Liu
,
L.-J.
,
Murphy
,
M.
, and
Mann
,
R.
,
1997
, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin-and Pin-Mounted Markers
,”
Human Mov. Sci.
,
16
(
2–3
), pp.
219
242
.10.1016/S0167-9457(96)00053-X
19.
Kim
,
E.
, and
Freivalds
,
A.
,
2018
, “
Two-Dimensional Biomechanical Thumb Model for Pipetting
,”
Int. J. Ind. Ergon.
,
68
, pp.
165
175
.10.1016/j.ergon.2018.07.008
20.
Wu
,
J. Z.
,
Sinsel
,
E. W.
,
Gloekler
,
D. S.
,
Wimer
,
B. M.
,
Zhao
,
K. D.
,
An
,
K. N.
, and
Buczek
,
F. L.
,
2012
, “
Inverse Dynamic Analysis of the Biomechanics of the Thumb While Pipetting: A Case Study
,”
Med. Eng. Phys.
,
34
(
6
), pp.
693
701
.10.1016/j.medengphy.2011.09.012
21.
Wu
,
J. Z.
,
Sinsel
,
E. W.
,
Shroyer
,
J. F.
,
Warren
,
C. M.
,
Welcome
,
D. E.
,
Zhao
,
K. D.
,
An
,
K. N.
, and
Buczek
,
F. L.
,
2014
, “
Analysis of the Musculoskeletal Loading of the Thumb During Pipetting–a Pilot Study
,”
J. Biomech.
,
47
(
2
), pp.
392
399
.10.1016/j.jbiomech.2013.11.015
22.
Wu
,
J. Z.
,
Sinsel
,
E. W.
,
Shroyer
,
J. F.
,
Welcome
,
D. E.
,
Zhao
,
K. D.
,
An
,
K. N.
, and
Buczek
,
F. L.
,
2013
, “
The Musculoskeletal Loading Profile of the Thumb During Pipetting Based on Tendon Displacement
,”
Med. Eng. Phys.
,
35
(
12
), pp.
1801
1810
.10.1016/j.medengphy.2013.08.004
23.
Wu
,
J. Z.
,
Sinsel
,
E. W.
,
Zhao
,
K. D.
,
An
,
K. N.
, and
Buczek
,
F. L.
,
2015
, “
Analysis of the Constraint Joint Loading in the Thumb During Pipetting
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
084501
.10.1115/1.4030311
24.
Johnson
,
J. E.
,
Lee
,
P.
,
McIff
,
T. E.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2014
, “
Computationally Efficient Magnetic Resonance Imaging Based Surface Contact Modeling as a Tool to Evaluate Joint Injuries and Outcomes of Surgical Interventions Compared to Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
136
(
4
), pp.
0410021
0410029
.10.1115/1.4026485
25.
Modaresi
,
S.
,
Kallem
,
M. S.
,
Lee
,
P.
,
McIff
,
T. E.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2017
, “
Evaluation of Midcarpal Capitate Contact Mechanics in Normal, Injured and Post-Operative Wrists
,”
Clin. Biomech. (Bristol, Avon)
,
47
, pp.
96
102
.10.1016/j.clinbiomech.2017.06.008
26.
Pillai
,
R. R.
,
Thoomukuntla
,
B.
,
Ateshian
,
G. A.
, and
Fischer
,
K. J.
,
2007
, “
MRI-Based Modeling for Evaluation of In Vivo Contact Mechanics in the Human Wrist During Active Light Grasp
,”
J. Biomech.
,
40
(
12
), pp.
2781
2787
.10.1016/j.jbiomech.2006.12.019
27.
Dourthe
,
B.
,
Nickmanesh
,
R.
,
Wilson
,
D. R.
,
D'Agostino
,
P.
,
Patwa
,
A. N.
,
Grinstaff
,
M. W.
,
Snyder
,
B. D.
, and
Vereecke
,
E.
,
2019
, “
Assessment of Healthy Trapeziometacarpal Cartilage Properties Using Indentation Testing and Contrast-Enhanced Computed Tomography
,”
Clin. Biomech.
,
61
, pp.
181
189
.10.1016/j.clinbiomech.2018.12.015
28.
Rivers
,
P. A.
,
Rosenwasser
,
M. P.
,
Mow
,
V. C.
,
Pawluk
,
R. J.
,
Strauch
,
R. J.
,
Sugalski
,
M. T.
, and
Ateshian
,
G. A.
,
2000
, “
Osteoarthritic Changes in the Biochemical Composition of Thumb Carpometacarpal Joint Cartilage and Correlation With Biomechanical Properties
,”
J. Hand Surg.
,
25
(
5
), pp.
889
898
.10.1053/jhsu.2000.16358
29.
Boschetti
,
F.
,
Pennati
,
G.
,
Gervaso
,
F.
,
Peretti
,
G. M.
, and
Dubini
,
G.
,
2004
, “
Biomechanical Properties of Human Articular Cartilage Under Compressive Loads
,”
Biorheology
,
41
(
3–4
), pp.
159
166
.https://content.iospress.com/articles/biorheology/bir295?resultNumber=0&totalResults=3&start=0&q=Boschetti&resultsPageSize=10&rows=10
30.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.10.1016/S0021-9290(96)00133-9
31.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2002
, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
,
35
(
7
), pp.
903
909
.10.1016/S0021-9290(02)00052-0
32.
Dourthe
,
B.
,
D'Agostino
,
P.
,
Stockmans
,
F.
,
Kerkhof
,
F.
, and
Vereecke
,
E.
,
2016
, “
In Vivo Contact Biomechanics in the Trapeziometacarpal Joint Using Finite Deformation Biphasic Theory and Mathematical Modelling
,”
Med. Eng. Phys.
,
38
(
2
), pp.
108
114
.10.1016/j.medengphy.2015.11.003
33.
Schneider
,
M. T. Y.
,
Zhang
,
J.
,
Crisco
,
J. J.
,
Weiss
,
A. C.
,
Ladd
,
A. L.
,
Mithraratne
,
K.
,
Nielsen
,
P.
, and
Besier
,
T.
,
2017
, “
Trapeziometacarpal Joint Contact Varies Between Men and Women During Three Isometric Functional Tasks
,”
Med. Eng. Phys.
,
50
, pp.
43
49
.10.1016/j.medengphy.2017.09.002
You do not currently have access to this content.