Abstract

A shock wave-driven needle-free syringe was developed and tested for liquid jet delivery into an artificial skin model and porcine skin samples. The device could deliver an adequate volume of liquid to a depth sufficient for drug dissemination in skin samples. The device is equipped with a splash-proof conduit and a silencer for smooth operation. The concept is expected to minimize the pain of liquid injection by (a) minimally breaching the blood vessels in the skin, (b) reducing trauma and inflammation, and aiding in regeneration of the incised spot by the liquid of the jet, and (c) preserving most of the microcirculation system in the target, enabling an effective drug uptake. A theoretical model that predicts jet penetration into viscoelastic targets is derived and presented. A sound agreement has been observed between the experimental jet penetration depths and the corresponding theoretical predictions. The development can offer a cost-effective, minimally invasive health care solution for immunization and drug delivery.

References

1.
Kumar
,
R. B.
, and
Rahman
,
Z. U.
,
2013
, “
Needle Free Injection Systems
,”
Int. J. Pharm. Sci. Res.
,
4
(
1
), pp.
132
147
.10.13040/IJP SR.0975-8232.4(1).132-47
2.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
King
,
T. S.
,
2006
, “
The Penetration of a Soft Solid by a Liquid Jet, With Application to the Administration of a Needle-Free Injection
,”
J. Biomech.
,
39
(
14
), pp.
2593
2602
.10.1016/j.jbiomech.2005.08.028
3.
Giudice
,
E. L.
, and
Campbell
,
J. D.
,
2006
, “
Needle-Free Vaccine Delivery
,”
Adv. Drug Deliv. Rev.
,
58
(
1
), pp.
68
89
.10.1016/j.addr.2005.12.003
4.
Kale
,
T. R.
, and
Momin
,
M.
,
2014
, “
Needle Free Injection Technology-An Overview
,”
Innov. Pharm.
,
5
(
1
), p.
148
.10.24926/iip.v5i1.330
5.
Arora
,
A.
,
Hakim
,
I.
,
Baxter
,
J.
,
Rathnasingham
,
R.
,
Srinivasan
,
R.
,
Fletcher
,
D. A.
, and
Mitragotri
,
S.
,
2007
, “
Needle-Free Delivery of Macromolecules Across the Skin by Nanoliter-Volume Pulsed Microjets
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
11
), pp.
4255
4260
.10.1073/pnas.0700182104
6.
Wijsmuller
,
G.
, and
Snider
,
D. E.
, Jr
,
1975
, “
Skin Testing: A Comparison of the Jet Injector With the Mantoux Method
,”
Am. Rev. Respir. Disease
,
112
(
6
), pp.
789
798
.10.1164/arrd.1975.112.6.789
7.
Hemond
,
B. D.
,
Taberner
,
A.
,
Hogan
,
C.
,
Crane
,
B.
, and
Hunter
,
I. W.
,
2011
, “
Development and Performance of a Controllable Autoloading Needle-Free Jet Injector
,”
ASME J. Med. Dev.
,
5
(
1
), p.
015001
.10.1115/1.4003330
8.
Krizek
,
J.
,
Goumoëns
,
F. D.
,
Delrot
,
P.
, and
Moser
,
C.
,
2020
, “
Needle-Free Delivery of Fluids From Compact Laser-Based Jet Injector
,”
Lab Chip
,
20
(
20
), pp.
3784
3791
.10.1039/D0LC00646G
9.
Mitragotri
,
S.
,
2006
, “
Current Status and Future Prospects of Needle-Free Liquid Jet Injectors
,”
Nat. Rev. Drug Discov.
,
5
(
7
), pp.
543
548
.10.1038/nrd2076
10.
Menezes
,
V.
,
Kumar
,
S.
, and
Takayama
,
K.
,
2009
, “
Shock Wave Driven Liquid Microjets for Drug Delivery
,”
J. Appl. Phys.
,
106
(
8
), p.
086102
.10.1063/1.3245320
11.
Mukda
,
P.
,
Pianthong
,
K.
, and
Seehanam
,
W.
,
2017
, “
A New Concept of Needle-Free Jet Injector by the Impact Driven Method
,”
ASME J. Med. Dev.
,
11
(
1
), p.
011011
.10.1115/1.4035563
12.
Chen
,
K.
,
Zhou
,
H.
,
Li
,
J.
, and
Cheng
,
G. J.
,
2010
, “
A Model on Liquid Penetration Into Soft Material With Application to Needle-Free Jet Injection
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
101005
.10.1115/1.4002487
13.
Battula
,
N.
,
Menezes
,
V.
, and
Hosseini
,
H.
,
2016
, “
A Miniature Shock Wave Driven Micro‐Jet Injector for Needle‐Free Vaccine/Drug Delivery
,”
Biotechnol. Bioeng.
,
113
(
11
), pp.
2507
2512
.10.1002/bit.26016
14.
Battula
,
N.
,
Menezes
,
V.
,
Bhalekar
,
S.
,
Bhalekar
,
S. H.
,
Nejad
,
S. M.
, and
Hosseini
,
H.
,
2017
, “
Impulse-Powered Needle-Free Syringe for Vaccine/Drug Injection
,”
Technol. Health Care
,
25
(
6
), pp.
1131
1138
.10.3233/THC-171022
15.
Wang
,
Y.
,
Tai
,
B. L.
,
Yu
,
H.
, and
Shih
,
A. J.
,
2014
, “
Silicone-Based Tissue-Mimicking Phantom for Needle Insertion Simulation
,”
ASME J. Med. Dev.
,
8
(
2
), p.
021001
.10.1115/1.4026508
16.
Chanda
,
A.
,
2018
, “
Biomechanical Modeling of Human Skin Tissue Surrogates
,”
Biomimetics
,
3
(
3
), p.
18
.10.3390/biomimetics3030018
17.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
Radford
,
D.
,
2006
, “
The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates
,”
Int. J. Impact Eng.
,
32
(
9
), pp.
1384
1402
.10.1016/j.ijimpeng.2004.11.010
18.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
838
848
.10.1115/1.1992528
19.
Schmook
,
F. P.
,
Meingassner
,
J. G.
, and
Billich
,
A.
,
2001
, “
Comparison of Human Skin or Epidermis Models With Human and Animal Skin in in-Vitro Percutaneous Absorption
,”
Int. J. Pharm.
,
215
(
1–2
), pp.
51
56
.10.1016/S0378-5173(00)00665-7
20.
Baxter
,
J.
, and
Mitragotri
,
S.
,
2005
, “
Jet-Induced Skin Puncture and Its Impact on Needle-Free Jet Injection: Experimental Studies and a Predictive Model
,”
J. Control. Release
,
106
(
3
), pp.
361
373
.10.1016/j.jconrel.2005.05.023
21.
Walters
,
W. P.
,
Flis
,
W. J.
, and
Chou
,
P. C.
,
1988
, “
A Survey of Shaped-Charge Jet Penetration Models
,”
Int. J. Impact Eng.
,
7
(
3
), pp.
307
325
.10.1016/0734-743X(88)90032-2
22.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
, Vol.
5
,
Elsevier
,
New York
, pp.
27
49
.
23.
Taberner
,
A.
,
Hogan
,
N. C.
, and
Hunter
,
I. W.
,
2012
, “
Needle-Free Jet Injection Using Real-Time Controlled Linear Lorentz-Force Actuators
,”
Med. Eng. Phys.
,
34
(
9
), pp.
1228
1235
.10.1016/j.medengphy.2011.12.010
You do not currently have access to this content.