Abstract

Annuloplasty ring choice and design are critical to the long-term efficacy of mitral valve (MV) repair. DynaRing is a selectively compliant annuloplasty ring composed of varying stiffness elastomer segments, a shape-set nitinol core, and a cross diameter filament. The ring provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics. Moreover, adjusting elastomer properties provides a mechanism for effectively tuning key MV metrics to specific patients. We evaluate the ring embedded in porcine valves with an ex-vivo left heart simulator and perform a 150 million cycle fatigue test via a custom oscillatory system. We present a patient-specific design approach for determining ring parameters using a finite element model optimization and patient MRI data. Ex-vivo experiment results demonstrate that motion of DynaRing closely matches literature values for healthy annuli. Findings from the patient-specific optimization establish DynaRing's ability to adjust the anterior–posterior and intercommissural diameters and saddle height by up to 8.8%, 5.6%, 19.8%, respectively, and match a wide range of patient data.

References

1.
Wu
,
S.
,
Chai
,
A.
,
Arimie
,
S.
,
Mehra
,
A.
,
Clavijo
,
L.
,
Matthews
,
R. V.
, and
Shavelle
,
D. M.
,
2018
, “
Incidence and Treatment of Severe Primary Mitral Regurgitation in Contemporary Clinical Practice
,”
Cardiovasc. Revascular. Med.
,
19
(
8
), pp.
960
963
.10.1016/j.carrev.2018.07.021
2.
Neto
,
F. L.
,
Marques
,
L. C.
, and
Aiello
,
V. D.
,
2018
, “
Myxomatous Degeneration of the Mitral Valve
,”
Autopsy Case Rep.
,
8
(
4
), p. e2018058.10.4322/acr.2018.058
3.
Timek
,
T. A.
, and
Miller
,
D. C.
,
2001
, “
Experimental and Clinical Assessment of Mitral Annular Area and Dynamics: What Are we Actually Measuring?
,”
Ann. Thorac. Surg.
,
72
(
3
), pp.
966
974
.10.1016/S0003-4975(01)02702-3
4.
Levine
,
R. A.
,
Handschumacher
,
M. D.
,
Sanfilippo
,
A.
,
Hagege
,
A.
,
Harrigan
,
P.
,
Marshall
,
J.
, and
Weyman
,
A.
,
1989
, “
Three-Dimensional Echocardiographic Reconstruction of the Mitral Valve, With Implications for the Diagnosis of Mitral Valve Prolapse
,”
Circulation
,
80
(
3
), pp.
589
598
.10.1161/01.CIR.80.3.589
5.
Salgo
,
I. S.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Bowen
,
F. W.
,
Plappert
,
T.
,
St John Sutton
,
M. G.
, and
Edmunds
,
L. H.
,
2002
, “
Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress
,”
Circulation
,
106
(
6
), pp.
711
717
.10.1161/01.CIR.0000025426.39426.83
6.
David
,
T. E.
,
Komeda
,
M.
,
Pollick
,
C.
, and
Burns
,
R. J.
,
1989
, “
Mitral Valve Annuloplasty: The Effect of the Type on Left Ventricular Function
,”
Ann. Thorac. Surg.
,
47
(
4
), pp.
524
528
.10.1016/0003-4975(89)90426-8
7.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J.-P. E.
,
Swanson
,
J. C.
,
Miller
,
D. C.
, and
Kuhl
,
E.
,
2012
, “
Mitral Valve Annuloplasty
,”
Ann. Biomed. Eng.
,
40
(
3
), pp.
750
761
.10.1007/s10439-011-0442-y
8.
Frishman
,
S.
,
Kight
,
A.
,
Pirozzi
,
I.
,
Imbrie-Moore
,
A. M.
,
Paulsen
,
M. J.
,
Woo
,
J. Y.
, and
Cutkosky
,
M. R.
,
2020
, “
Selectively Compliant Annuloplasty Ring to Enable Annular Dynamics in Mitral Valve Repair Evaluated by In-Vitro Stereovision
,”
ASME
Paper No. DMD2020-9034.10.1115/DMD2020-9034
9.
Pitsis
,
A.
,
Kelpis
,
T.
,
Theofilogiannakos
,
E.
,
Tsotsolis
,
N.
,
Boudoulas
,
H.
, and
Boudoulas
,
K. D.
,
2019
, “
Mitral Valve Repair: Moving Towards a Personalized Ring
,”
J. Cardiothorac. Surg.
,
14
(
1
), pp.
1
7
.10.1186/s13019-019-0926-7
10.
Pouch
,
A. M.
,
Vergnat
,
M.
,
McGarvey
,
J. R.
,
Ferrari
,
G.
,
Jackson
,
B. M.
,
Sehgal
,
C. M.
,
Yushkevich
,
P. A.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2014
, “
Statistical Assessment of Normal Mitral Annular Geometry Using Automated Three-Dimensional Echocardiographic Analysis
,”
Ann. Thorac. Surg.
,
97
(
1
), pp.
71
77
.10.1016/j.athoracsur.2013.07.096
11.
Leng
,
S.
,
Zhang
,
S.
,
Jiang
,
M.
,
Zhao
,
X.
,
Wu
,
R.
,
Allen
,
J.
,
He
,
B.
,
San Tan
,
R.
, and
Zhong
,
L.
,
2018
, “
Imaging 4D Morphology and Dynamics of Mitral Annulus in Humans Using Cardiac Cine MR Feature Tracking
,”
Sci. Rep.
,
8
(
1
), p.
81
.10.1038/s41598-017-18354-2
12.
Sündermann
,
S. H.
,
Gessat
,
M.
,
Cesarovic
,
N.
,
Frauenfelder
,
T.
,
Biaggi
,
P.
,
Bettex
,
D.
,
Falk
,
V.
, and
Jacobs
,
S.
,
2013
, “
Implantation of Personalized, Biocompatible Mitral Annuloplasty Rings: Feasibility Study in an Animal Model
,”
Interact. Cardiovasc. Thorac. Surg.
,
16
(
4
), pp.
417
422
.10.1093/icvts/ivs531
13.
Purser
,
M. F.
,
Richards
,
A. L.
,
Cook
,
R. C.
,
Osborne
,
J. A.
,
Cormier
,
D. R.
, and
Buckner
,
G. D.
,
2011
, “
A Novel Shape Memory Alloy Annuloplasty Ring for Minimally Invasive Surgery: Design, Fabrication, and Evaluation
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
367
377
.10.1007/s10439-010-0126-z
14.
Tjørnild
,
M. J.
,
Skov
,
S. N.
,
Røpcke
,
D. M.
,
Ilkjær
,
C.
,
Rasmussen
,
J.
,
Couetil
,
J.-P.
, and
Nielsen
,
S. L.
,
2019
, “
Mitral Annuloplasty Ring With Selective Flexibility for Septal–Lateral Contraction and Remodelling Properties
,”
Interact. Cardiovasc. Thorac. Surg.
,
28
(
1
), pp.
65
70
.10.1093/icvts/ivy194
15.
Pierce
,
E. L.
,
Bloodworth
, IV
,
C. H.
,
Siefert
,
A. W.
,
Easley
,
T. F.
,
Takayama
,
T.
,
Kawamura
,
T.
,
Gorman
,
R. C.
,
Gorman
, III
,
J. H.
, and
Yoganathan
,
A. P.
,
2018
, “
Mitral Annuloplasty Ring Suture Forces: Impact of Surgeon, Ring, and Use Conditions
,”
J. Thorac. Cardiovasc. Surg.
,
155
(
1
), pp.
131
139
.10.1016/j.jtcvs.2017.06.036
16.
Ncho
,
B. E.
,
Pierce
,
E. L.
,
Bloodworth
, IV.
,
C. H.
,
Imai
,
A.
,
Okamoto
,
K.
,
Saito
,
Y.
,
Gorman
,
R. C.
,
Gorman
, III
,
J. H.
, and
Yoganathan
,
A. P.
,
2020
, “
Optimized Mitral Annuloplasty Ring Design Reduces Loading in the Posterior Annulus
,”
J. Thorac. Cardiovasc. Surg.
,
159
(
5
), pp.
1766
1774
.10.1016/j.jtcvs.2019.05.048
17.
Silbiger
,
J. J.
,
2012
, “
Anatomy, Mechanics, and Pathophysiology of the Mitral Annulus
,”
Am. Heart J.
,
164
(
2
), pp.
163
176
.10.1016/j.ahj.2012.05.014
18.
Gunning
,
G. M.
, and
Murphy
,
B. P.
,
2014
, “
Determination of the Tensile Mechanical Properties of the Segmented Mitral Valve Annulus
,”
J. Biomech.
,
47
(
2
), pp.
334
340
.10.1016/j.jbiomech.2013.11.035
19.
Gilbert
,
H. B.
, and
Webster
,
R. J.
, III
,
2016
, “
Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots
,”
IEEE Robot. Autom. Lett.
,
1
(
1
), pp.
98
105
.10.1109/LRA.2015.2507706
20.
Dagum
,
P.
,
Timek
,
T.
,
Green
,
G. R.
,
Daughters
,
G. T.
,
Liang
,
D.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
,
2001
, “
Three-Dimensional Geometric Comparison of Partial and Complete Flexible Mitral Annuloplasty Rings
,”
J. Thorac. Cardiovasc. Surg.
,
122
(
4
), pp.
665
673
.10.1067/mtc.2001.116313
21.
Kong
,
F.
,
Pham
,
T.
,
Martin
,
C.
,
Elefteriades
,
J.
,
McKay
,
R.
,
Primiano
,
C.
, and
Sun
,
W.
,
2018
, “
Finite Element Analysis of Annuloplasty and Papillary Muscle Relocation on a Patient-Specific Mitral Regurgitation Model
,”
PLoS One
,
13
(
6
), p.
e0198331
.10.1371/journal.pone.0198331
22.
Serafini
,
D. B.
,
1999
, “
A Framework for Managing Models in Nonlinear Optimization of Computationally Expensive Functions
,”
Ph.D. thesis
,
Rice University
, Houston, TX.https://hdl.handle.net/1911/19444
23.
Kochenderfer
,
M. J.
, and
Wheeler
,
T. A.
,
2019
,
Algorithms for Optimization
,
MIT Press
, Cambridge, MA.
24.
Bertil
,
M.
,
1986
,
Spatial Variation
,
Springer-Verlag
, New York.
25.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
26.
Grewal
,
J.
,
Suri
,
R.
,
Mankad
,
S.
,
Tanaka
,
A.
,
Mahoney
,
D. W.
,
Schaff
,
H. V.
,
Miller
,
F. A.
, and
Enriquez-Sarano
,
M.
,
2010
, “
Mitral Annular Dynamics in Myxomatous Valve Disease: New Insights With Real-Time 3-Dimensional Echocardiography
,”
Circulation
,
121
(
12
), pp.
1423
1431
.10.1161/CIRCULATIONAHA.109.901181
27.
Wan
,
S.
,
Lee
,
A. P.
,
Jin
,
C.-N.
,
Wong
,
R. H.
,
Chan
,
H. H.
,
Ng
,
C. S.
,
Wan
,
I. Y.
, and
Underwood
,
M. J.
,
2015
, “
The Choice of Mitral Annuloplastic Ring–Beyond ‘Surgeon’s Preference
,”
Ann. Cardiothorac. Surg.
,
4
(
3
), p.
261
.10.3978/j.issn.2225-319X.2015.01.05
28.
Paulsen
,
M. J.
,
Bae
,
J. H.
,
Imbrie-Moore
,
A. M.
,
Wang
,
H.
,
Hironaka
,
C. E.
,
Farry
,
J. M.
,
Lucian
,
H.
,
Thakore
,
A. D.
,
Cutkosky
,
M. R.
, and
Joseph Woo
,
Y.
,
2020
, “
Development and Ex Vivo Validation of Novel Force-Sensing Neochordae for Measuring Chordae Tendineae Tension in the Mitral Valve Apparatus Using Optical Fibers With Embedded Bragg Gratings
,”
ASME J. Biomech. Eng.
,
142
(
1
), p.
014501
.10.1115/1.4044142
29.
Imbrie-Moore
,
A. M.
,
Paulsen
,
M. J.
,
Zhu
,
Y.
,
Wang
,
H.
,
Lucian
,
H. J.
,
Farry
,
J. M.
,
MacArthur
,
J. W.
,
Ma
,
M.
, and
Woo
,
Y. J.
,
2021
, “
A Novel Cross-Species Model of Barlow's Disease to Biomechanically Analyze Repair Techniques in an Ex Vivo Left Heart Simulator
,”
J. Thorac. Cardiovasc. Surg.
,
161
(
5
), pp.
1776
1783
.10.1016/j.jtcvs.2020.01.086
30.
Akca
,
D.
,
2003
, “
Generalized Procrustes Analysis and Its Applications in Photogrammetry
,”
ETH, Zurich
, Switzerland.10.3929/ethz-a-004656648
31.
Hedrick
,
T. L.
,
2008
, “
Software Techniques for Two-and Three-Dimensional Kinematic Measurements of Biological and Biomimetic Systems
,”
Bioinspiration Biomimetics
,
3
(
3
), p.
034001
.10.1088/1748-3182/3/3/034001
32.
Wang
,
H.
,
Paulsen
,
M. J.
,
Imbrie-Moore
,
A. M.
,
Tada
,
Y.
,
Bergamasco
,
H.
,
Baker
,
S. W.
,
Shudo
,
Y.
,
Ma
,
M.
, and
Woo
,
J. Y.
,
2020
, “
In Vivo Validation of Restored Chordal Biomechanics After Mitral Ring Annuloplasty in a Rare Ovine Case of Natural Chronic Functional Mitral Regurgitation
,”
J. Cardiovasc. Dev. Disease
,
7
(
2
), p.
17
.10.3390/jcdd7020017
33.
Kaiser
,
A. D.
,
McQueen
,
D. M.
, and
Peskin
,
C. S.
,
2019
, “
Modeling the Mitral Valve
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
11
), p.
e3240
.10.1002/cnm.3240
34.
Garcia
,
J.
,
Yang
,
Z.
,
Mongrain
,
R.
,
Leask
,
R. L.
, and
Lachapelle
,
K.
,
2018
, “
3D Printing Materials and Their Use in Medical Education: A Review of Current Technology and Trends for the Future
,”
BMJ Simul. Technol. Enhanced Learn.
,
4
(
1
), pp.
27
40
.10.1136/bmjstel-2017-000234
35.
Imbrie-Moore
,
A. M.
,
Paullin
,
C. C.
,
Paulsen
,
M. J.
,
Grady
,
F.
,
Wang
,
H.
,
Hironaka
,
C. E.
,
Farry
,
J. M.
,
Lucian
,
H. J.
, and
Woo
,
Y. J.
,
2020
, “
A Novel 3D-Printed Preferential Posterior Mitral Annular Dilation Device Delineates Regurgitation Onset Threshold in an Ex Vivo Heart Simulator
,”
Med. Eng. Phys.
,
77
, pp.
10
18
.10.1016/j.medengphy.2020.01.005
36.
Granegger
,
M.
,
Aigner
,
P.
,
Kitzmüller
,
E.
,
Stoiber
,
M.
,
Moscato
,
F.
,
Michel-Behnke
,
I.
, and
Schima
,
H.
,
2016
, “
A Passive Beating Heart Setup for Interventional Cardiology Training
,”
Curr. Direct. Biomed. Eng.
,
2
(
1
), pp.
735
739
.10.1515/cdbme-2016-0160
37.
Leopaldi
,
A. M.
,
Wrobel
,
K.
,
Speziali
,
G.
,
van Tuijl
,
S.
,
Drasutiene
,
A.
, and
Chitwood
,
W. R.
, Jr
,
2018
, “
The Dynamic Cardiac Biosimulator: A Method for Training Physicians in Beating-Heart Mitral Valve Repair Procedures
,”
J. Thorac. Cardiovasc. Surg.
,
155
(
1
), pp.
147
155
.10.1016/j.jtcvs.2017.09.011
You do not currently have access to this content.