Abstract

Robotic devices are commonly used in surgical simulators to provide tactile, or haptic, feedback. They can provide customized feedback that can be rapidly modified with minimal hardware changes in comparison to nonrobotic systems. This work describes the design, development, and evaluation of one such tool: a novel uniaxial torque haptic device for a surgical training simulator. The objective of the work was to design a single connection haptic device that could augment an existing six degree-of-freedom haptic device to mimic a Concorde Clear vacuum curette. Design and evaluations focused on the tool's ability to deliver adequate torque, imitate a surgical tool, and be integrated into the haptic device. Twenty-nine surgeons tested the tool in the simulator and evaluated it via a questionnaire. The device was found to deliver the 800 N⋅mm of torque necessary to mimic an orthopedic procedure. Surgeons found it accurately imitated surgical tools physical appearance and maneuverability, scoring them 3.9 ± 1.0 and 3.3 ± 1.2, respectively, on a 1–5 Likert scale. By virtue of the functionality necessary for testing and evaluation, the device could be connected to the haptic device for mechanical and electrical engagement. This device is a step forward in the field of augmentable haptic devices for surgical simulation. By changing the number of robotically controlled degrees-of-freedom of a haptic device, existing devices can be tuned to meet the demands of a particular simulator, which has the potential to improve surgeon training standards.

References

1.
Winkler-Schwartz
,
A.
,
Yilmaz
,
R.
,
Mirchi
,
N.
,
Bissonnette
,
V.
,
Ledwos
,
N.
,
Siyar
,
S.
,
Azarnoush
,
H.
,
Karlik
,
B.
, and
Del Maestro
,
R.
,
2019
, “
Machine Learning Identification of Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality Simulation
,”
JAMA Netw. Open
,
2
(
8
), p.
e198363
. 10.1001/jamanetworkopen.2019.8363
2.
McDougall
,
E.
,
2007
, “
Validation of Surgical Simulators
,”
J. Endourol.
,
21
(
3
), pp.
244
247
. 10.1089/end.2007.9985
3.
Oliveira
,
M.
,
Araujo
,
A.
,
Nicolato
,
A.
,
Prosdocimi
,
A.
,
Godinho
,
J.
,
Valle
,
A.
,
Santos
,
M.
,
Reis
,
A.
,
Ferreira
,
M.
,
Sabbagh
,
A.
,
Gusmao
,
S.
, and
Del Maestro
,
R.
,
2016
, “
Face, Content, and Construct Validity of Brain Tumor Microsurgery Simulation Using a Human Placenta Model
,”
Oper. Neurosurg.
,
12
(
1
), pp.
61
67
. 10.1227/NEU.0000000000001030
4.
Depuy Synthes
,
2017
,
CONCORDETM Clear MIS Discectomy Device
,
Depuy Synthes, West Chester, PA
.
5.
Mo
,
F.
,
Yuan
,
P.
,
Araghi
,
A.
, and
Serhan
,
H.
,
2018
, “
Time Savings and Related Economic Benefits of Suction-Curette Device for Transforaminal Lumbar Interbody Fusion Discectomy
,”
Int. J. Spine Surg.
,
12
(
5
), pp.
582
586
. 10.14444/5071
6.
Delorme
,
S.
,
Laroche
,
D.
,
Diraddo
,
R.
, and
Del Maestro
,
R.
,
2012
, “
NeuroTouch: A Physics-Based Virtual Simulator for Cranial Microneurosurgery Training
,”
Neurosurgery
,
71
(
1 Suppl Operative
), pp.
32
42
. 10.1227/NEU.0b013e318249c744
7.
CAE Healthcare,
2020
, “
Vimedix Ultrasound Simulator
,” CAE Healthcare, Montréal, QC, Canada, accessed Apr. 25, 2022, https://caehealthcare.com/ultrasound-simulation/vimedix/
8.
Mahvi
,
D.
, and
Zdeblick
,
T.
,
1996
, “
A Prospective Study of Laparoscopic Spinal Fusion: Technique and Operative Complications
,”
Ann. Surg.
,
224
(
1
), pp.
85
90
. 10.1097/00000658-199607000-00013
9.
Cooper
,
J.
, and
Taqueti
,
V.
,
2004
, “
A Brief History of the Development of Mannequin Simulators for Clinical Education and Training
,”
Qual. Saf. Health Care
,
13
(
Suppl 1
), pp.
i11
i18
. 10.1136/qshc.2004.009886
10.
Chmarra
,
M.
,
Dankelman
,
J.
,
Van Den Dobbelsteen
,
J.
, and
Jansen
,
F.
,
2008
, “
Force Feedback and Basic Laparoscopic Skills
,”
Surg. Endosc.
,
22
(
10
), pp.
2140
2148
. 10.1007/s00464-008-9937-5
11.
Kim
,
H.
,
Rattner
,
D.
, and
Srinivasan
,
M.
,
2003
, “
The Role of Simulation Fidelity in Laparoscopic Surgical Training
,”
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science
,
T. M.
Peters
,
R. E.
Ellis
,
G.
Goos
,
J.
Hartmanis
, and
J.
van Leeuwen
, eds.,
Springer
,
Montréal, QC, Canada
, pp.
1
8
.10.1007/978-3-540-39899-8_1
12.
Sweet
,
R.
,
2017
, “
The CREST Simulation Development Process: Training the Next Generation
,”
J. Endourol.
,
31
(
S1
), pp.
S-69
S75
. 10.1089/end.2016.0613
13.
Mathieu
,
L.
, and
Lee-Huu
,
P.
,
1998
, “
Seat for Motion Simulator and Method of Motion Simulation
,” U.S. Patent No. US5980255A, pp.
1
3
.
14.
Misra
,
S.
,
Ramesh
,
K.
, and
Okamura
,
A.
,
2008
, “
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
,”
Presence: Teleoper. Virtual Environ.
,
17
(
5
), pp.
463
491
. 10.1162/pres.17.5.463
15.
Okamura
,
A.
,
2009
, “
Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
,”
Curr. Opin. Urol.
,
19
(
1
), pp.
102
107
. 10.1097/MOU.0b013e32831a478c
16.
Behensky
,
M.
,
Moncrief
,
R.
,
Durfey
,
E.
, and
Loper
,
M.
,
1991
, “
Control Device Such As A Steering Wheel For Video Vehicle Simulator With Realistic Feedback Forces
,” U.S. Patent No. US5044956A, pp.
1
13
.
17.
Lynch
,
K.
, and
Park
,
F.
,
2017
,
Modern Robotics. Mechanics, Planning, and Control
,
Cambridge University Press
,
New York
.
18.
Culbertson
,
H.
,
Schorr
,
S.
, and
Okamura
,
A.
,
2018
, “
Haptics: The Present and Future of Artificial Touch Sensation
,”
Annu. Rev. Control Robot. Auton.
,
1
(
1
), pp.
385
409
. 10.1146/annurev-control-060117-105043
19.
Acker
,
W.
,
Tai
,
B.
,
Belmont
,
B.
,
Shih
,
A.
,
Irwin
,
T.
, and
Holmes
,
J.
,
2016
, “
Two-Finger Tightness: What is It? Measuring Torque and Reproducibility in a Simulated Model
,”
J. Orthop. Trauma
,
30
(
5
), pp.
273
277
. 10.1097/BOT.0000000000000506
20.
Majewicz
,
A.
,
Glasser
,
J.
,
Bauer
,
R.
,
Belkoff
,
S.
,
Mears
,
S.
, and
Okamura
,
A.
,
2010
, “
Design of a Haptic Simulator for Osteosynthesis Screw Insertion
,”
IEEE Haptics Symposium, HAPTICS 2010
, Waltham, MA, Mar. 25–26, pp.
497
500
.10.1109/HAPTIC.2010.5444610
21.
Pedram
,
S.
,
Klatzky
,
R.
, and
Berkelman
,
P.
,
2017
, “
Torque Contribution to Haptic Rendering of Virtual Textures
,”
IEEE Trans. Haptics
,
10
(
4
), pp.
567
579
. 10.1109/TOH.2017.2679000
22.
Forsslund
,
J.
,
Selesnick
,
J.
,
Salisbury
,
K.
,
Silva
,
R.
, and
Blevins
,
N.
,
2013
, “
The Effect of Haptic Degrees of Freedom on Task Performance in Virtual Surgical Environments
,”
Studies in Health Technology and Informatics (Medicine Meets Virtual Reality 20: NextMed/MMVR20)
,
J. D.
Westwood
,
S. W.
Westwood
,
L.
Felländer-Tsai
,
R. S.
Haluck
,
R. A.
Robb
, and
K. G.
SengeVosburgh
, eds.,
IOS Press
,
San Diego
, CA, pp.
129
135
.10.3233/978-1-61499-209-7-129
23.
Mortimer
,
M.
,
Horan
,
B.
, and
Stojcevski
,
A.
,
2014
, “
Design for Manufacture of a Low-Cost Haptic Degree-Of-Freedom
,”
Int. J. Electron. Electr. Eng.
,
2
(
2
), pp.
85
89
. 10.12720/ijeee.2.2.85-89
24.
Turini
,
G.
,
Moglia
,
A.
,
Ferrari
,
V.
,
Ferrari
,
M.
, and
Mosca
,
F.
,
2012
, “
Patient-Specific Surgical Simulator for the Pre-Operative Planning of Single-Incision Laparoscopic Surgery With Bimanual Robots
,”
Comput. Aided Surg.
,
17
(
3
), pp.
103
112
. 10.3109/10929088.2012.672595
25.
Weller
,
R.
, and
Zachmann
,
G.
,
2012
, “
User Performance in Complex Bi-Manual Haptic Manipulation With 3 DOFs vs. 6 DOFs
,”
Proceedings of Haptics Symposium
, HAPTICS 2012, Vancouver, BC, Canada, Mar. 4–7.10.1109/HAPTIC.2012.6183808
26.
Thakur
,
Y.
,
Holdsworth
,
D.
, and
Drangova
,
M.
,
2009
, “
Characterization of Catheter Dynamics During Percutaneous Transluminal Catheter Procedures
,”
IEEE Trans. Biomed. Eng.
,
56
(
8
), pp.
2140
2143
. 10.1109/TBME.2008.921148
27.
Cotter
,
T.
,
Mongrain
,
R.
, and
Driscoll
,
M.
,
2022
, “
Vacuum Curette Lumbar Discectomy Mechanics for Use in Spine Surgical Training Simulators
,”
Sci. Rep., epub
.
28.
Ledwos
,
N.
,
Mirchi
,
N.
,
Bissonnette
,
V.
,
Winkler-Schwartz
,
A.
,
Yilmaz
,
R.
, and
Del Maestro
,
R.
,
2021
, “
Virtual Reality Anterior Cervical Discectomy and Fusion Simulation on the Novel Sim-Ortho Platform: Validation Studies
,”
Oper. Neurosurg.
,
20
(
1
), pp.
74
82
. 10.1093/ons/opaa269
29.
Goldenberg
,
M.
, and
Lee
,
J. Y.
,
2018
, “
Surgical Education, Simulation, and Simulators—Updating the Concept of Validity
,”
Curr. Urol. Rep.
,
19
(
7
), p.
52
.10.1007/s11934-018-0799-7
30.
Kuphaldt
,
T.
, 2022, “
Lessons in Electric Circuits
,
All About Circuits
,” accessed Apr. 25, 2022, https://www.allaboutcircuits.com/textbook/alternating-current/chpt-8/low-pass-filters/
You do not currently have access to this content.