Abstract

The continuum over tube applied to natural orifice transluminal endoscopic surgery (NOTES) should be flexible during insertion and provide sufficient stiffness upon arrival at the lesion. In order to satisfy these two properties, a variable stiffness continuum over tube was proposed. The over tube realizes stiffness variation through the heating and cooling of filling materials. Polyethylene glycol, cocoa butter, and gallium metal are selected as filling materials. Several experiments were designed to test its rigid and response characteristic, and suitable material was selected. The risk management test was carried out, and the frequency and risk level of the risk point were recorded. According to experimental data, the polyethylene glycol and gallium show better variable stiffness performance, with the 20 times stiffness variation range, and polyethylene glycol was selected as suitable materials for its low cost and nontoxic characteristic. The average heating time and cooling time of polyethylene glycol-filled over tube are 52.3 s and 36 s, respectively. Moreover, three kinds of high-frequency risk points including smoke, thread ejection, and uneven distribution of the material were found, and corresponding design improvement and use principle are proposed. The proposed continuum over tube can satisfy the requirement of colorectal NOTES for flexibility and stiffness of instruments, and the safety of the instrument can be improved by controlling high-frequency risk points with relevant methods.

References

1.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators, A: Phys.
,
247
, pp.
323
354
.10.1016/j.sna.2016.06.010
2.
Loeve
,
A. J.
,
Bosma
,
J. H.
,
Breedveld
,
P.
,
Dodou
,
D.
, and
Dankelman
,
J.
,
2010
, “
Polymer Rigidity Control for Endoscopic Shaft-Guide ‘Plastolock’—A Feasibility Study
,”
ASME J. Med. Devices
,
4
(
4
), p.
045001
.10.1115/1.4002494
3.
Zhao
,
R.
,
Yao
,
Y.
, and
Luo
,
Y.
,
2016
, “
Development of a Variable Stiffness Over Tube Based on Low-Melting-Point-Alloy for Endoscopic Surgery
,”
ASME J. Med. Devices
,
10
(
2
), pp.
303
310
.10.1115/1.4032813
4.
Li
,
X. J.
,
2017
, “
Research and Optimal Design of the Variable Stiffness Manipulator in Single Port Surgical Instrument
,”
Tianjin University
,
Tianjin, China
.
5.
Jiang
,
S.
,
Chen
,
B.
,
Qi
,
F.
,
Cao
,
Y.
,
Ju
,
F.
,
Bai
,
D.
, and
Wang
,
Y.
,
2020
, “
A Variable‐Stiffness Continuum Manipulators by an SMA-Based Sheath in Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
16
(
2
), p.
e2081
.10.1002/rcs.2081
6.
Le
,
H. M.
,
Do
,
T. N.
,
Cao
,
L.
, and
Phee
,
S. J.
,
2017
, “
Towards Active Variable Stiffness Manipulators for Surgical Robots
,” IEEE International Conference on Robotics and Automation (
ICRA 2017
), Singapore, May 29–June 3, pp.
1766
1771
.10.1109/ICRA.2017.7989209
7.
Kim
,
J.
, and
Choi
,
W.-Y.
,
2019
, “
Continuously Variable Stiffness Mechanism Using Nonuniform Patterns on Coaxial Tubes for Continuum Microsurgical Robot
,”
IEEE Trans. Rob.
,
35
(
6
), pp.
1475
1487
.10.1109/TRO.2019.2931480
8.
Kim
,
Y.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2012
, “
Design of a Tubular Snake-Like Manipulator With Stiffening Capability by Layer Jamming
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2012
), Vilamoura, Algarve, Portugal, Oct. 7–12, pp.
4251
4256
.10.1109/IROS.2012.6385574
9.
Jiang
,
A.
,
Xynogalas
,
G.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2012
, “
Design of a Variable Stiffness Flexible Manipulator With Composite Granular Jamming and Membrane Coupling
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2012
), Vilamoura, Algarve, Portugal, Oct. 7–12, pp.
2922
2927
.10.1109/IROS.2012.6385696
10.
Chen
,
Y.
,
Sun
,
J.
, and
Liu
,
Y.
,
2012
, “
Variable Stiffness Property Study on Shape Memory Polymer Composite Tube
,”
Smart Mater. Struct.
,
21
(
9
), pp.
94021
94029
.10.1088/0964-1726/21/9/094021
11.
Majidi
,
C.
, and
Wood
,
R. J.
,
2010
, “
Tunable Elastic Stiffness With Microconfined Magnetorheological Domains at Low Magnetic Field
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164104
.10.1063/1.3503969
12.
Alambeigi
,
F.
,
Seifabadi
,
R.
, and
Armand
,
M.
,
2016
, “
A Continuum Manipulator With Phase Changing Alloy
,” IEEE International Conference on Robotics and Automation (
ICRA 2016
), Stockholm, Sweden, May 16–21, pp.
758
764
.10.1109/ICRA.2016.7487204
13.
Wang
,
J.
,
Wang
,
S.
,
Li
,
J.
,
Ren
,
X.
, and
Briggs
,
R. M.
,
2018
, “
Development of a Novel Robotic Platform With Controllable Stiffness Manipulation Arms for Laparoendoscopic Single‐Site Surgery (LESS)
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
1
), p.
e1838
.10.1002/rcs.1838
14.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
218
229
.10.1016/j.rcim.2016.09.004
15.
Xu
,
K.
,
Zhao
,
J.
, and
Fu
,
M.
,
2015
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.10.1109/TMECH.2014.2364625
16.
Ding
,
J.
,
Xu
,
K.
,
Goldman
,
R.
,
Allen
,
P.
,
Fowler
,
D.
, and
Simaan
,
N.
,
2010
, “
Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery
,” IEEE International Conference on Robotics and Automation (
ICRA 2010
), Anchorage, AK, May 4, pp.
1053
1058
.10.1109/ROBOT.2010.5509244
17.
University of Oxford, 2019, “Our World in Data,” University of Oxford, Oxford, UK, accessed Apr. 23, 2022, https://ourworldindata.org/causes-of-death
18.
Liu
,
K. Y.
,
2018
, “
Research and Design of the Stiffness Controllable Instrument Platform Based on Natural Orifice Transluminal Endoscopic Surgery
,”
Tianjin University
,
Tianjin, China
.
19.
Shan
,
W.
,
Lu
,
T.
, and
Majidi
,
C.
,
2013
, “
Soft-Matter Composites With Electrically Tunable Elastic Rigidity
,”
Smart Mater. Struct.
,
22
(
8
), pp.
85005
85012
.10.1088/0964-1726/22/8/085005
20.
Wenlong
,
Y.
,
Wei
,
D.
, and
Zhijiang
,
D.
,
2013
, “
Mechanics-Based Kinematic Modeling of a Continuum Manipulator
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2013
), Tokyo, Japan, Nov. 3–7, pp.
5052
5058
.10.1109/IROS.2013.6697087
21.
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Armand
,
M.
,
Taylor
,
R. H.
, and
Mears
,
S. C.
,
2011
, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally-Invasive Removal of Osteolysis
,” 2011 IEEE International Conference on Robotics and Automation (
ICRA 2011
), Shanghai, China, May 9–13, pp.
2913
2920
.10.1109/ICRA.2011.5980285
22.
Schubert
,
B. E.
, and
Floreano
,
D.
,
2013
, “
Variable Stiffness Material Based on Rigid Low-Melting-Point-Alloy Microstructures Embedded in Soft Poly(Dimethylsiloxane) (PDMS)
,”
RSC Adv.
,
3
(
46
), pp.
24671
24679
.10.1039/c3ra44412k
23.
Ren
,
X. Y.
,
2016
, “
Experiment and Analysis of Variable Stiffness Theory for LESS Instrument
,”
Tianjin University
,
Tianjin, China
.
24.
Wang
,
W.
,
Rodrigue
,
H.
, and
Ahn
,
S. H.
,
2015
, “
Smart Soft Composite Actuator With Shape Retention Capability Using Embedded Fusible Alloy Structures
,”
Compos. Part B: Eng.
,
78
, pp.
507
514
.10.1016/j.compositesb.2015.04.007
25.
Shan
,
W.
,
Diller
,
S.
, and
Tutcuoglu
,
A.
,
2015
, “
Rigidity-Tuning Conductive Elastomer
,”
Smart Mater. Struct.
,
24
(
6
), p. 0
65001
.10.1088/0964-1726/24/6/065001
26.
Payne
,
C. J.
,
Gras
,
G.
,
Hughes
,
M.
,
Nathwani
,
D.
, and
Yang
,
G.
,
2015
, “
A Hand-Held Flexible Mechatronic Device for Arthroscopy
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS 2015
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
817
823
.10.1109/IROS.2015.7353466
27.
Hong
,
W.
,
Xie
,
L.
,
Liu
,
J.
,
Sun
,
Y.
,
Li
,
K.
, and
Wang
,
H.
,
2018
, “
Development of a Novel Continuum Robotic System for Maxillary Sinus Surgery
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1226
1237
.10.1109/TMECH.2018.2818442
28.
ISO,
2019
, “
Medical Devices—Application of Risk Management to Medical Devices
,” ISO, Geneva, Switzerland, Standard No. ISO 14971:2019.
29.
ISO,
2020
, “
Medical Devices—Guidance on the Application of ISO 14971
,” ISO, Geneva, Switzerland, Standard No. ISO/TR 24971:2020.
30.
ISO
,
2016
, “
Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes
,” ISO, Geneva, Switzerland, Standard No. ISO 13485:2016.
31.
Dong
,
H.
, and
Walker
,
G. M.
,
2012
, “
Adjustable Stiffness Tubes Via Thermal Modulation of a Low Melting Point Polymer
,”
Smart Mater. Struct.
,
21
(
4
), pp.
317
321
.10.1088/0964-1726/21/4/042001
You do not currently have access to this content.