Abstract

Evaluating the credibility of computational models used in medical device development is increasingly important as medical devices become more complex and modeling takes on a more critical role in the device development process. While bench-testing based comparisons are common for assessing model credibility and have many advantages, such as control over test specimens and the ability to quantify outputs, the credibility assessments performed with bench tests often do not evaluate the clinical relevance of key aspects of model form (such as boundary conditions, constitutive models/properties, and geometries) selected when simulating in vivo conditions. Real-world data (outcomes data generated through clinical use of a device) offer an opportunity to assess the applicability and clinical relevance of a computational model. Although real-world data are frequently less controlled and more qualitative than benchtop data, real-world data are often a direct assessment of a particular clinical complication and therefore of high clinical relevance. Further, real-world data have the potential to reveal failure modes not previously identified in preclinical failure modes analysis, thereby motivating testing advancements. To review the use of clinical data in medical device modeling, this paper presents a series of examples related to tibial tray fracture that incorporate varying levels of benchtop data and real world data when evaluating model credibility. The merits and drawbacks of the credibility assessment for each example are discussed in order to provide practical and actionable guidance on the use of real-world data for establishing and demonstrating model credibility.

References

1.
US Food & Drug Administration
,
2017
,
Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices
,
US Food & Drug Administration
,
Rockville, MD
.
2.
ASTM International
,
2020
,
Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM F2996-20.
3.
ASTM International
,
2019
,
Standard Practice for Finite Element Analysis (FEA) of Metallic Orthopaedic Total Knee Tibial Components
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM F3334-19.
4.
ASTM International
,
2016
,
Standard Test Method for Finite Element Analysis (FEA) of Metallic Orthopaedic Total Knee Femoral Components Under Closing Conditions
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM F3161-16.
5.
ASTM International
,
2014
,
Standard Guide for Finite Element Analysis (FEA) of Metallic Vascular Stents Subjected to Uniform Radial Loading
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM F2514-08.
6.
ASME
,
2018
,
Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices
,
American Society of Mechanical Engineers
,
New York, NY
, Standard No. ASME V&V40-2018.
7.
Pathmanathan
,
P.
,
Gray
,
R.
,
Romero
,
V.
, and
Morrison
,
T.
,
2017
, “
Applicability Analysis of Validation Evidence for Biomedical Computational Models
,”
ASME J. Verif., Valid., Uncertainty Quantif.
,
2
(
2
), p.
021005
.10.1115/1.4037671
8.
Morrison
,
T. M.
,
Hariharan
,
P.
,
Funkhouser
,
C. M.
,
Afshari
,
P.
,
Goodin
,
M.
, and
Horner
,
M.
,
2019
, “
Assessing Computational Model Credibility Using a Risk-Based Framework: Application to Hemolysis in Centrifugal Blood Pumps
,”
ASAIO J.
,
65
(
4
), pp.
349
360
.10.1097/MAT.0000000000000996
9.
Dharia
,
M.
,
Snyder
,
S.
, and
Bischoff
,
J.
,
2020
, “
Computational Model Validation of Contact Mechanics in Total Ankle Arthroplasty
,”
J. Orthop. Res.
,
38
(
5
), pp.
1063
1069
.10.1002/jor.24551
10.
Nagaraja
,
S.
,
Loughran
,
G.
,
Gandhi
,
A.
,
Inzana
,
J.
,
Baumann
,
A.
,
Kartikeya
,
K.
, and
Horner
,
M.
,
2020
, “
Verification, Validation, and Uncertainty Quantification of Spinal Rod Computational Models Under Three-Point Bending
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
5
(
1
), p.
011002
.10.1115/1.4046329
11.
Scott
,
R.
,
Ewald
,
F.
, and
Walker
,
P.
,
1984
, “
Fracture of the Metallic Tibial Tray Following Total Knee Replacement: Report of Two Cases
,”
J Bone Jt. Surg. Am.
,
66
(
5
), pp.
780
782
.10.2106/00004623-198466050-00021
12.
Callaghan
,
J.
,
DeMik
,
D.
,
Bedard
,
N.
,
Odland
,
A.
,
Kane
,
W.
, and
Kurtz
,
S.
,
2018
, “
Tibial Tray Fracture in a Modern Prosthesis With Retrieval Analysis
,”
Arthroplasty Today
,
4
(
2
), pp.
143
147
.10.1016/j.artd.2017.12.005
13.
Boran
,
S.
,
Hurson
,
C.
,
Synnott
,
K.
, and
Keogh
,
P.
,
2005
, “
Biomechanical Analysis of Tibial Tray Fractures Post Total Knee Arthroplasty
,”
Eur. J. Orthop. Surg. Traumatol.
,
15
(
4
), pp.
295
299
.10.1007/s00590-005-0242-x
14.
Stormont
,
G.
, and
Stormont
,
D.
,
2017
, “
Catastrophic Failures of Regenerex Tibial Components: A Case Series
,”
J. Knee Surg.
,
30
(
06
), pp.
594
599
.10.1055/s-0036-1593876
15.
Abernethy
,
P.
,
Robinson
,
C.
, and
Fowler
,
R.
,
1996
, “
Fracture of the Metal Tibial Tray After Kinematic Total Knee Replacement
,”
J. Bone Jt. Surg. Br.
,
78-B
(
2
), pp.
220
225
.10.1302/0301-620X.78B2.0780220
16.
Gilg
,
M. M.
,
Zeller
,
C. W.
,
Leitner
,
L.
,
Leithner
,
A.
,
Labek
,
G.
, and
Sadoghi
,
P.
,
2016
, “
The Incidence of Implant Fractures After Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
24
(
10
), pp.
3272
3279
.10.1007/s00167-016-4160-8
17.
Rytter
,
S.
,
Madsen
,
F.
,
Jepsen
,
C.
, and
Stilling
,
M.
,
2019
, “
Implant Fracture of the Regenerex(R) Modular Metal Tibial Component: A Report of Three Cases
,”
Knee
,
26
(
5
), pp.
1143
1151
.10.1016/j.knee.2019.06.009
18.
ASTM
,
2019
,
Standard Practice for Cyclic Fatigue Testing of Metal Tibial Tray Components of Total Knee Joint Replacements
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM F1800-19e1.
19.
Ahir
,
S.
,
Blunn
,
G.
,
Haider
,
H.
, and
Walker
,
P.
,
1999
, “
Evaluation of a Testing Method for the Fatigue Performance of Total Knee Tibial Trays
,”
J. Biomech.
,
32
(
10
), pp.
1049
1057
.10.1016/S0021-9290(99)00094-9
20.
Walker
,
P.
,
Komistek
,
R.
,
Barrett
,
D.
,
Anderson
,
D.
,
Dennis
,
D.
, and
Sampson
,
M.
,
2002
, “
Motion of a Mobile Bearing Knee Allowing Translation and Rotation
,”
J. Arthroplasty
,
17
(
1
), pp.
11
19
.10.1054/arth.2002.28731
21.
Banks
,
S.
,
Bellemans
,
J.
,
Hiroyuki
,
N.
,
Whiteside
,
L.
,
Harman
,
M.
, and
Hodge
,
A.
,
2003
, “
Knee Motions During Maximum Flexion in Fixed and Mobile-Bearing Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
131
138
.10.1097/01.blo.0000063121.39522.19
22.
U.S. Food & Drug Administration
,
2021
,
Assessing the Credibility of Computational Modeling and Simulation in Medical Device Submissions, Draft Guidance for Industry and Food and Drug Administration Staff
,
U.S. Food & Drug Administration
,
Rockville, MD
.
You do not currently have access to this content.